GIS methodologies for local tsunami risk assessment: examples

<u>R. Frauenfelder^{1,2},</u> C.B. Harbitz^{1,2}, Sverdrup-Thygeson^{1,2}, G. Kaiser^{2,4}, R. Swarny³, L. Gruenburg³, S. Glimsdal^{1,2}, F. Løvholt^{1,2}, B. McAdoo³

Norwegian Geotechnical Institute, Norway
 International Centre for Geohazards, Norway
 Department of Earth Sciences and Geography, Vassar College, Poughkeepsie, NY
 Previously: Christian-Albrechts University of Kiel, Germany

CONCERT-Japan Resilience Against Disasters

Meeting @ NGI 25.10.2013

Background and motivation

Three tsunami vulnerability and risk analyses performed. GIS model being adapted to the available information.

- 1. Bridgetown, Barbados: possible future tsunami scenario, *much information available*
 - Topography, population from local partners
 - Field survey for building use and vulnerability
- 2. Batangas, The Philippines: possible future scenario, little information available
 - Internet and other sources of information
- **3. American Samoa**: *hindcast* of 2009 South Pacific tsunami *for validation* of the tsunami vulnerability and risk model

Methodology Bridgetown, Barbados

Intentions:

ANASSau amas: Eleuthera Isla

- Develop methodology
- Demonstration study for local partners in a UWI/NGI capacity building programme

Tsunami risk assessment

Risk = Hazard * Consequence

Hazard = maximum tsunami flow depth related to a certain
probability of occurrence

Consequence described by exposure and mortality

Exposure; density of population

Mortality; function of flow depth and building vulnerability

 \rightarrow 4 factors describing the buildings:

height – material – barrier – use

GENERAL

Structural building vulnerability

 Total structural building vulnerability was assessed using field survey data and their spatial extrapolation to bigger units

	Heig	ght code Heig		ight Vulnerability		Description					
	1				4 Only one		e floor		Use code	Use Vulnerability	Description
					2 2 floors				1	1	Residential/community service
	3				1 3 or mor		re floors		2	3	Business/Commercial
		Ŭ				0 01 1110		J	3	4	Tourism
Material code		Material Vulnerability			Description						Government Services (Health, Education, Fisheries,
1	2		2	Stone					4	10	transportation etc)
2	4		1	Wood or tim		nber					
3	3		Wood + cond		ncrete			5	10	Emergency Services (Police, Fire, Coast Guard, EMS, medical etc)	
4	4		1		Concrete				Ŭ		
5		2			Metal						churches, community centers,
6			,		otono ond y	wood			6	5	recreational areas)
		Barrier coo	de Barri		er Vulnerability		Description				Utilities (water, electricity,
1		1			4		No barrier			10	sewage, telecommunications, fuel, gas stations)
8		2			3 Lo		.ow/narrow earth			2	Heritage Sites
		3		2					5	Banking and finance	
				1					0	Abandoned	
		4		1 H		ign concrete wall					
		5	2		2	L	Low stone wall				
		6			1	н	ligh stone wall				

Credit: Nadia Gour, UWI

Total predicted mortality

Convert all building vulnerability scores to [0,1]

Use vulnerability score to pick the "correct" S-curve.

Local mortality risk – Bridgetown, Barbados

Legend

250

500

Study area

Mortality (in number of persons per raster cell)

Methodology Batangas City, The Philippines

Intentions:

- Apply "Bridgetown" methodology in different study area
- Local demonstration project

Challenge:

- Limited amount of data from local partners
- Therefore, everything was searched on the internet or studied from "the sky", i.e. from google maps and a purchased Quickbird image

5.00

Structural building vulnerability

 Total structural building vulnerability was assessed using publicly available photographic imagery available on GE

ID	Assigned Vulnerability	Description
1	0,25	concrete-stone, several floors
2	0,5	concrete-stone-wood, one or two floors
3	0,75	stone-wood, one or two floors
4	1	wood-corrugated iron, one floor
5	0,25	Large industrial plants

Image credit: GoogleEarth, users: batangas, Romeo E. Barcena, samuel006, Teban

Local mortality risk – Batangas

Hindcast of 2009 South Pacific tsunami for American Samoa

Intentions:

- Validating the GIS model approach for building vulnerability and mortality
- Maximum flow depth was obtained by back calculating the 2009 South Pacific earthquake and tsunami,
- A lot of data on population, building _ types, infrastructure, inundation, flow depth, damages, and death tolls
- The GIS model was adapted for optimal use of the available data

Comparison to trimlines ("v7")

Concluding remarks

- Method for quantitative tsunami risk assessment developed
- Flexibility with regard to amount and type of data at hand
- Two assessments + 1 validation successfully performed
- Potential for further development (distribution of people night/day, indoors/streets/public areas, importance of TEWS...)

First deliverable to Rapsodi

Publication in peer-reviewed journal about the three studies in Bridgetown, Batangas and Samoa, comparison of similarities and differences (WP1, D.1)

Further work within Rapsodi

Apply modified tsunami risk assessment for 2011 Tohoku event (WP4, D.8)

- Collaboration with PARI necessary
- Data, location, focus?

Quantitative tsunami risk assessment

Our suggestion:

- to use <u>extended</u> tsunami risk model used at NGI
- extension could include:
 - Specification of people exposure according to different scenarios
 - Inclusion of economical values of private building and companies
 - Accounting for environmental impacts and socio-economical interrelations (e.g. loss of ecosystem services)
 - Inclusion of risk to lifelines (such as railway networks or social facilities)

General data interests

- High resolution (better than SRTM) digital elevation model
- Alternatively, digital contour line maps
- Census data aggregated by geographical units (enumeration districts, city quarters, etc.), the smaller the aggregation units, the better
- Data on structural building vulnerability (material, height, barriers)

General data interests

- Information on:
 - Location of shelters
 - Location of mitigation measures (evacuation plans and routes, safe elevated areas, barriers, etc.)
 - Age of population (distribution)
 - Differences in seasonal (residents?, seasonal workers?, tourism?) and/or night and day use of specific buildings, traffic routes, etc. -> Scenariobased distribution of people

Specific data interests (depending on final focus)

Ecological focus:

- Land use/land cover map
- Value of ecosystems services/functions
- Location of industrial sites with potential for harm

Economical focus:

Property values (from statistics, GDP, number of employees, etc.)

Critical infrastructure focus:

• Location of critical infrastructure, shelters, lifelines, ...

Thank you for your attention!

Information from:

- N. Gour, H. Fritz, B. Jaffe, Shona v Z de Jong,
 S. Koshimura, J. Melby
- USGS
- EERI report
- American Samoa Department of Homeland Security

DETECTION

TSUNAMI

Much more downloaded from internet

Funding by:

- NGI/ICG/The Research Council of Norway
- US National Science Foundation (RAPID, PIRE)
- Vassar College