

Technische

Leichtweiß-Institute for Hydraulic Engineering and Water Resources Department for Hydromechanics and Coastal Engineering

Summary of laboratory experiments at LWI (WP3)

Agnieszka Strusińska-Correia, Andreas Kortenhaus RAPSODI Project meeting | 5.-6. March 2015 | LWI, TU Braunschweig, Germany

Content

- 1. Motivation and objectives
- 2. Experimental set-up and programme
- 3. Results
- 4. Conclusions

Content

1. Motivation and objectives

- 2. Experimental set-up and programme
- 3. Results
- 4. Conclusions

STAGE 1: Evaluation of existing knowledge and comparison of mitigation strategies

WP1: Evaluation of existing tools, data, and mitigation strategies (METU)

STAGE 2: Numerical and experimental studies

WP2: Numerical modelling of tsunamis (METU)

WP3: Laboratory experiments on tsunami impact on structures (TU-BS)

STAGE 3: Methodology for tsunami vulnerability assessment and risk management

WP4: Development of a risk assessment model (NGI)WP5: Development of mitigation strategies (PARI)WP6: Networking and dissemination (NGI)

Objectives

WP3: Laboratory experiments on tsunami impact on structures:

- based on failure analysis of existing structures in Japan \rightarrow failure matrix (METU)
- experimental investigation on tsunami-induced damage/forces on coastal structures
- experimental investigation on performance of innovative structures

- Improvement of knowledge on structure failure under tsunami impact
- Development of innovative protective structures against tsunami
- Comparison with PARI experiments and their extension

Content

1. Motivation and objectives

2. Experimental set-up and programme

- 3. Results
- 4. Summary and outlook

Lenght: ca. 90.0 m Depth: ca 1.25 m Width: 2.0 and 1.0 m

RAPSODI experiments:

- 2.0 m wide flume
- Solitary waves and tsunami bores
- Model scale1:30 (Froude similitude law)
- Breakwater geometry → simplified geometry of the breakwater at Haydarpasa Port, Turkey

Tested breakwater configurations (1)

Tested breakwater configurations (2)

Techn Unive Braun

Breakwater layers

Armour layer on the seaside (100 - 150 g)Armour layer on the harbour side (50 - 100 g)Berm (100 - 150 g)Filter layer (50 - 100 g)Core layer (0 - 10 g)Concrete crown wall

Core layer (0-10 g)

Filter layer (50-100 g) Harbour side armour

Seaside armour (100-150 g) Berm layer

Breakwater geometry

Configuration 1

Configuration 3

Configuration 2

Configuration 4

Measuring instrumentation (1)

Measuring instrumentation (2)

		Bore	Configuration 1, 2, 3, 4		
Phase 1	METU	Solitary wave	Configuration 1, 2 (partially)	July 2014	
Phase 2	TU-BS (Student training)	Solitary wave	Configuration 1, 2 (completed)	August 2014	
Phase 3	TU-BS	Solitary wave	Configuration 3, 4	January 2015	

Test no.	Configuration		Wave type	Water depth		
	Left part of wave flume [No.]	Right part of wave flume [No.]		In front of bore gate [m]	Behind bore gate [m]	
20140721_01 20140721_02 20140721_03	3	4	Tsunami bore	0.200	0.750 0.800 0.850	
20140723_01 20140723_02	1	2	Tsunami bore	0.200	0.750 0.800	

Configuration 1: crown wall and berm	Configuration 3: crown wall
Configuration 2: without crown wall	Configuration 4: shifted crown wall

Testing programme – Solitary wave

Test no.	Config	uration	Wave type	Wave	Water
	Left part of wave flume [No.]	Right part of wave flume [No.]		height [m]	depth [m]
20140725_01 20140725_02 20140807_01 20140807_02 20140807_03	1	2	Solitary wave	0.050 0.075 0.100 0.125 0.150	0.660
20150106_01 20150106_02 20150107_01 20150108_01 20150108_02	3	4	Solitary wave	0.050 0.075 0.100 0.125 0.150	0.660

Configuration 1: crown wall and berm	Configuration 3: crown wall
Configuration 2: without crown wall	Configuration 4: shifted crown wall

Content

- 1. Motivation and objectives
- 2. Experimental set-up and programme
- 3. Results
- 4. Conclusions

Experiments with solitary wave vs. experiments with bore

Solitary wave

Bore

	Solitary wave	Bore
Impact duration	6 s	33 s
Damage cause	Overflow	Pressure difference on seaside and harbour side (flow through breakwater body)
Water conditions	Breakwater submerged (h = 0.66 m)	Breakwater emerged

Analysis of results for experiments with solitary wave

U	Breakwater configuration							
п	1	2	3	4				
0.050 m	No overflow	Overflow	No overflow	No overflow				
0.075 m	Overflow	Overflow	Overflow	Overflow				
0.100 m	Overflow	Overflow	Overflow	Overflow				
0.125 m	Overflow	Overflow	Overflow	Overflow				
0.150 m	Overflow	Overflow	Overflow	Overflow				

Configuration 1: crown wall and berm	Configuration 3: crown wall
Configuration 2: without crown wall	Configuration 4: shifted crown wall

Observed damage – solitary wave (1)

L	Breakwater configuration							
п	1	2	3	4				
0.050 m	No damage	No damage	No damage	No damage				
0.075 m	No damage	No damage	Minor damage	Minor damage				
0.100 m	Minor damage	Minor damage	Minor damage	Major damage				
0.125 m	Minor damage	Minor damage	Medium damage	Major damage				
0.150 m	Major damage	Major damage	Major damage	Major damage				

Minor damage – Some stones moved, crown element did not move

Medium damage – Many stones moved, crown element hardly moved

Major damage – Many stones moved, crown element moved

Observed damage – solitary wave (2)

Technische Universität Braunschweig

Damage profiles (1): H = 0.100 m

Configuration 1

Configuration 3

Configuration 2

Configuration 4

Technische
Universität
Braunschweig

Damage profiles (2): H = 0.150 m

Configuration 1

Configuration 3

Configuration 2

Configuration 4

Max. solitary wave height (1)

	Breakwater configuration											
н	1			2		3			4			
	WG 6	WG 7	WG 8	WG 6	WG 7	WG 8	WG 6	WG 7	WG 8	WG 6	WG 7	WG 8
0.050 m	0.070	no overflow	0.007	0.075	0.023	0.010	0.075	no overflow	0.007	0.076	no overflow	0.008
0.075 m	0.098	0.030	0.016	0.104	0.056	0.033	0.106	0.031	0.013	0.108	0.029	0.015
0.100 m	0.122	0.063	0.046	0.130	0.070	0.066	0.138	0.072	0.048	0.140	0.059	0.053
0.125 m	0.150	0.114	0.084	0.160	0.092	0.094	0.170	0.104	0.096	0.171	0.063	0.082
0.150 m	0.176	0.121	0.109	0.188	0.128	0.111	0.201	0.120	0.119	0.202	0.070	0.116

Max. solitary wave height (2): H = 0.100 m

Configuration 1

Configuration 4

Time [s]

Configuration 3

Technische Universität 5.-6. MARCH 2015 | A Braunschweig

Max. solitary wave height (3): H = 0.150 m

Configuration 1

Configuration 4

Time [s]

Configuration 3

Technische

Universität Braunschweig

Max. solitary wave induced pressure (1)

	Breakwater configuration									
н		1	2		3			4		
	PS 1	PS 2	PS 1	PS 2	PS 1	PS 2	PS 1	PS 2		
0.050 m	0.739	0.169	not installed	not installed	0.491	- 0.289	0.195	- 0.603		
0.075 m	1.006	0.667	not installed	not installed	0.804	- 1.026	0.698	- 0.778		
0.100 m	1.189	1.000	not installed	not installed	1.193	- 1.614	1.076	- 1.366		
0.125 m	1.274	1.350	not installed	not installed	1.384	- 2.063	1.432	- 1.639		
0.150 m	1.354	1.530	not installed	not installed	1.441	- 2.417	1.709	- 1.883		

Max. solitary wave induced pressure (2): H = 0.100 m

Configuration 3

Technische
Universität
Braunschweig

5.-6. MARCH 2015 | A. Strusińska-Correia, A. Kortenhaus | RAPSODI Project - LWI | Page 29

103

105

99

101

20150107_01 Solitary wave H = 0.10 m Configuration 4

-PS1_R ---- PS2_

Configuration 4

Max. solitary wave induced pressure (3): H = 0.150 m

Configuration 1

Configuration 4

5.-6. MARCH 2015 | A. Strusińska-Correia, A. Kortenhaus | RAPSODI Project - LWI | Page 30

105

Max. flow velocity under solitary wave/velocity at overtopping (1)

	Breakwater configuration								
н		1	2		3		4		
	ADV	PR	ADV	PR	ADV	PR	ADV	PR	
0.050 m	-	no overflow	0.150	not working	0.094	no overflow	0.081	no overflow	
0.075 m	0.250	0.135	0.150	not working	0.173	0.226	0.162	0.235	
0.100 m	0.400	0.245	0.280	not working	0.218	0.371	0.218	0.385	
0.125 m	0.450	0.292	0.380	not working	0.230	0.416	0.249	0.361	
0.150 m	0.750	0.314	0.490	not working	0.280	0.416	0.291	0.402	

Max. flow velocity under solitary wave/velocity at overtopping (2): H = 0.100 m

Configuration 3

Configuration 4

Max. flow velocity under solitary wave/velocity at overtopping (3): H = 0.150 m

Configuration 4

Technische
Universität
Braunschweig

Analysis of results for experiments with tsunami bore

h ₀ , h ₁	Breakwater configuration				
	1	2	3	4	
0.2 m, 0.75 m	No overflow*	No overflow*	No overflow*	No overflow*	
0.2 m, 0.80 m	-	-	Weak overflow*	No overflow*	
0.2 m, 0.85 m	Overflow*	Overflow*	Overflow*	Overflow*	

*flow through breakwater could be observed

h ₀ , h ₁	Breakwater configuration				
	1	2	3	4	
0.2 m, 0.75 m	Minor damage	Minor damage	No damage	No damage	
0.2 m, 0.80 m	-	-	Minor damage	Minor damage	
0.2 m, 0.85 m	Major damage*	Major damage*	Total failure	Total failure	

*due to flow through breakwater

Damage profiles : ho = 0.8 m

Configuration 1

Configuration 3

Configuration 2

Configuration 4

Technische
Universität
Braunschweig

Content

- 1. Motivation and objectives
- 2. Experimental set-up and programme
- 3. Results
- 4. Conclusions

Conclusions

• Experiments with tsunami bore not very realistic (the breakwaters were emerged)

In tests with solitary wave impact:

- Largest wave overtopping attributed to configuration 2 (without crown wall element)
- -> inclusion of the crown wall element necessary
- No significant influence of the presence of the berm on the breakwater performance
- Configuration 4 (with shifted crown wall element) most unstable
- No damage to seaside breakwater slope
- Recommendation: double layer at the harbour slope -> experiments at PARI

Thank you all for the great engagement and effort!!!!

Thank you for your attention

Dr.-Ing. Andreas Kortenhaus

Dr.-Ing. Agnieszka Strusińska-Correia

Leichtweiß-Institute for Hydraulic Engineering and Water Resources Department of Hydromechanics and Coastal Engineering TU Braunschweig, Germany

andreas.kortenhaus@ugent.be a.strusinska@tu-bs.de

Technische Universität Braunschweig

