

CONCERT-Japan RAPSODI Risk Assessment and design of Prevention Structures fOr enhanced tsunami DIsaster resilience

Carl B. Harbitz & Agnieszka B. Strusinska-Correia

CONCERT-Japan Joint Workshop on

Resilience Against Disasters

JST Tokyo 25th November 2014

ORTA DOĞU TEKNİK ÜNİVERSİTESİ MIDDLE EAST TECHNICAL UNIVERSITY

Technische Universität Braunschweig

Consortium of four partners

• 1. NGI – Norwegian Geotechnical Institute, Norway

• 2. PARI – Port and Airport Research Institute, Japan

Consortium of four partners

3. METU – Middle East Technical
 University, Turkey () ORTA DOĞU TEKNIK ÜNİVERSITESI

4. TU-BS – TU Braunschweig,
 Leichtweiss – Institute for Hydraulic

Engineering and Water Resources,

Germany

Complementary background

- All partners do physical and numerical tsunami modelling
- All partners have experience with coastal management and mitigation structures
- PARI: data and expertise on <u>earthquake</u> tsunami impact
- NGI: experience on vulnerability and risk analysis; <u>landslide</u> tsunamis
- METU: expertise on mitigation strategies, socio-economic impact analysis, structural and social resilience
- TU-BS: laboratory facilities and expertise on coastal engineering, flood risk, and structural behaviour

Research idea - Main objectives

- 1. <u>Cooperation and exchange</u> of knowledge
- 2. Design of novel mitigation measures
- Quantitative <u>tsunami risk analysis;</u>

Connecting and Coordinating

Potential for further development based on data from the 2011 Tohoku tsunami

European Research and Technology Development with Japan

1. Cooperation and exchange

- Complementary expertise
 - Learn from each other
 - Produce results that we could not achieve alone
- Exchange
 - Experience, knowledge, results, staff
 - Smaller meetings, workshops, research visits
 - Joint deliverables and publications
- Dissemination
 - Documents for end-users and stakeholders on the web <u>http://www.ngi.no/en/Project-pages/RAPSODI/</u>
 - Guidelines for design of structures and risk management strategies
- Establish a platform for further Euro-Japan collaboration within tsunami science

Joint research activities

- Exchange of personnel for laboratory experiment campaigns
- Mutually contribute to joint Deliverables
- Quality control of «others'» Deliverables Integration of partners Exchange of knowlegde
- Field trip to the Norwegian rockslide tsunami warning center

2. Haydarpasa Breakwater Cross Section

Failure Mechanism

- Both type of experiments showed that the main failure mechanism of these types of breakwaters is sliding of crown walls.
- Sliding is mainly caused of difference in water level between sea side and the harbour side of the breakwater.
- Driving Forces
 - Pressure forces
 - Buoyancy Force
- Supporting Forces
 - Weight of crown wall
- Stones in the harbour side armour layer

2. Laboratory experiments at TUBS - overview

- Selection of the structure to be tested based on failure analysis of structures in Japan (METU) → roubble mound breakwater
- Breakwater geometry → simplified geometry of the breakwater at Haydarpasa Port, Turkey (tested by METU and PARI)
- Investigation of structure damage and exerted forces by tsunami (solitary waves and tsunami bores)
- Model scale1:30
 - Improvement of knowledge on structure failure under tsunami impact
 - Development of innovative protective structures against tsunami
 - Comparison with PARI experiments and their extension

Tested breakwater configurations (1)

Tested breakwater configurations (2)

Configuration 1 and 2

Configuration 3 and 4

Breakwater geometry

Configuration 1

Armour layer on the seaside (100 - 150 g)Armour layer on the harbour side (50 - 100 g)Berm (100 - 150 g)Filter layer (50 - 100 g)Core layer (0 - 10 g)Concrete crown wall

Filter layer (50-100 g) Harbour side armour

Seaside armour (100-150 g) Berm layer

Measuring instrumentation

Configuration 1

Experimental programme

Test no.	Configuration		Wave type	Wave	Water depth	
	Left part of wave flume [No.]	Right part of wave flume [No.]		height [m]	In front of bore gate [m]	Behind bore gate [m]
20140721_01 20140721_02 20140721_03	3	4	Tsunami bore	-	0.200	0.750 0.800 0.850
20140723_01 20140723_02	1	2	Tsunami bore	-	0.200	0.750 0.800
20140725_01 20140725_02	1	2	Solitary wave	0.050 0.075	0.680 0.680	
20140807_01 20140807_02 20140807_03	1	2	Solitary wave	0.100 0.125 0.150	0.670	

Configuration 1: crown wall and berm	Configuration 3: crown wall
Configuration 2: without crown wall	Configuration 4: shifted crown wall

Analysis of experimental data

- Identification of occurring processes
- Determination of duration of wave impact
- Determination of structure damage (classification of the damage, analysis of damage breakwater profiles)
- Analysis of evolution of wave profiles, determination of max. wave height/max. flow depth
- Determination of flow velocity
- Determination of wave-induced pressure and corresponding forces

Observed processes and structure damage

Test no.	Config.	Wave type	Observations
20140721_01	3 and 4	Bore: 0.2, 0.75m	No overflow, ftb, no damage
20140721_02		Bore: 0.2, 0.80m	Weak overflow (C3), ftb, minor damage
20140721_03		Bore: 0.2, 0.85m	Overflow, ftb, total failure
20140723_01	1 and 2	Bore: 0.2, 0.75m	No overflow, ftb, minor damage
20140723_02		Bore: 0.2, 0.80m	Overflow, ftb, major damage
20140725_01	1 and 2	Solitary: 0.050m	No overflow, no damage
20140725_02		Solitary: 0.075m	Overflow, almost no damage
20140807_01		Solitary: 0.100m	Overflow, minor damage
20140807_02		Solitary: 0.125m	Overflow, minor damage
20140807_03		Solitary: 0.150m	Overflow, major damage

ftb - flow through breakwater

Test with solitary wave of H=0.15 m (1)

Test with solitary wave of H=0.15 m (2)

Time [s]

JAPAN

Connecting and Coordinating Connecting European Research and Technology Development with Japan

Test with solitary wave of H=0.15 m (3)

Connecting and Coordinating Connecting European Research and Technology Development with Japan

PAR

Tests with bore 0.2 m, 0.8 m (1)

Tests with bore 0.2 m, 0.8 m (2)

Time [s]

Connecting and Coordinating 👘 🌮 European Research and Technology Development with Japan

CONCERT • JAPAN

Tests with bore 0.2 m, 0.8 m (3)

CONCERT JAPAN Connecting and Coordinating European Research and Technology Development with Japan

Preliminary conclusions

- Breakwater damage under bore impact due to pressure difference on seaside and harbour side → flow through porous media dominant, effect of overflow negligible → layers washed away
- No significant difference in degree of damage observed for configurations tested under bore impact \rightarrow no preferable solution
- Breakwater damage under solitary wave impact due to overflow
 → flow through porous media negligible → roubbles moved rather
 than washed away
- Incomplete overview of structure performance under solitary wave impact → tests with configurations 3 and 4 to be performed

3. Tsunami vulnerability and risk assessment

Today's quantitative models for tsunami risk assessment have clear limitations, in particular for the vulnerability *Idea:*

- Hindcast of the 2011 Tohoku tsunami
- Combine information on tsunami vulnerability
 - mortality rates and damages as function of tsunami flow depth and current velocities, buildings and other infrastructure, population capabilities and exposure, mitigation structures, etc.
- with existing models for tsunami risk analysis

an Research and Technology Development with Japan

→ Validation and further development

From hazard analysis to risk management

European Research and Technology Development with Japan

doi:10.5194/nhess-14-1223-2014

Risk parameters

Risk = Hazard * Consequence

Hazard = maximum tsunami flow depth related to a certain probability of occurrence

Consequence described by *exposure* and *mortality*

SITE DEPENDENT

GENERAL

Exposure; density of population

Mortality; function of flow depth and building vulnerability

 \rightarrow 4 factors describing the buildings:

height - material - barrier - use

Data

- Very high resolution digital elevation model
 - received from PARI
- Post-tsunami field data
 - water mark measurements, structural building vulnerability, etc. available on <u>http://fukkou.csis.u-tokyo.ac.jp/</u>
- Census data
 - aggregated by geographical units from the Portal Site of Official Statistics of Japan: <u>http://www.e-stat.go.jp/SG1/estat/eStatTopPortal.do</u>

European Research and Technology Development with Japan

Maruyama, Y., Tanaka, H., 2014. Evaluation of building damage and human casuality after the 2011 off the Pacific coast of Tohoku earthquake based on the population exposure. International Conference on Urban Disaster Reduction, Sept. 28.-Oct.1, 2014, Boulder, Colorado, US.

Back-calculating the 2011
 Tohoku earthquake and tsunami
 Tsunami inundation modelling
 with VHR DEM

Source: Esri, DigitalClobe, GeoEye, i-cubed, Earthstar Geographics, CNES/Airbus DS, USDA, USCS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community

50 Kilometers

25

Comparison of numerical simulation with post-tsunami «water mark» data

Vulnerability (200 x 200 m cel

Ishinomak

Mortality rate (200 x 200 m cells)

Populated areas (500 x 500 m cells)

Data preparation: courtesy of Assoc. Prof. Y. Maruyama, Chiba University

Expected no of fatalities (500 m x 500 m)

Most risk prone areas Need to improve building vulnerability

Progress and results to date

- Reports on SoA in tsunami mitigation and risk analysis
 - Structural and non-structural measures
 - Approaches for modelling and risk analysis
 - Comparisons Europe Japan
- Review of 2011 Tohoku post-tsunami field surveys
- Structure failure mode matrix
- Novel experiments on rubble mound breakwaters
- Tsunami risk analysis model
 - Tool to identify most critical areas
 - What factors contribute to the risk? (important for mitigation)

Connecting and Coordinating State European Research and Technology Development with Japan

CERT • JAPAN

Expected impacts on society and/or academia

- Identifcation of research gaps
- Failure mode matrix not previously presented
 - \rightarrow innovative new design of protective structures

European Research and Technology Development with Japan

- Improved risk assessment
 - → improved risk management
- Exchange of expertise on large-scale lab experiments
- Platform for future Euro-Japan collaboration in tsunami science

Plans for the future

Hoping for a new call that enables further collaboration

 New generation of laboratory studies for further improvement of the foundations and tsunami mitigation structures

.IAPAN

- Improved tsunami risk model including
 - other risks (beyond mortality)
 - other tsunami metrics for damage
 - more sophisticated numerical modellig and vulnerability analysis in urban areas

European Research and Technology Development with Japan

Challenges encountered – how overcome?

- Cultural and linguistic challenges
 - Different interpretation of the requirements stated in the proposal
 - Exchange and visits vs. scientific Deliverables
 - Different traditions for extent of Deliverables \rightarrow delays
- Extensive communication
 - emails, skype, phone
- Seeking advice from Innovation Norway and the Royal Norwegian Embassy in Tokyo
- Joint field trip to the fjords of western Norway and the rockslide tsunami warning center

Other challenges

- Different funding schemes and separate national fundings made a joint start difficult
- Extremely high management efforts required for a small project → severe delays, funding issue still not solved
- Different technical backgrounds required more discussions and planning than expected
 - Approach, schedule, etc. for the joint laboratory experiments

Advantages of the CONCERT-Japan framework

.IAPAN

European Research and Technology Development with Japan

- Better exchange of research results, more «global» perspective
- From the Europen side: Better access to information on the 2011 Tohoku tsunami
 - including some help with translations
- From the Japanese side: Opportunity to gain experience in collaboration with foreign researchers

Advantages of multilateral vs. bilateral cooperation

A multilateral cooperation is a definite plus

- Brings in various viewpoints and approaches
- A complementary and more complete consortium
 - tsunami science is very multi-disciplinary
 - earthquake source wave impact
 - numerical modelling physical modelling seismology –wave mechanics - statistics/likelihood – vulnerability and risk analysis
- Less chance of unresolved problems or deficient Deliverables

Opinion of joint call process

- Unclear funding schemes
- Good support prior to submission, weak support later

- need for revised budgets, contracts, Consortium Agreement,...
- much administrative effort needed

How could support within CONCERT-Japan have been improved?

- More focus on the scientific issues
 - allow for more than 10% personnel funding
- More assistance with budgets, contracts, agreement,...
- Joint reporting, avoid
 - separate reports to the Secretariat and the national funding agencies
 - different deadlines
 - different languages

How could support within CONCERT-Japan have been improved?

- Why not accept journal papers as Deliverables?
 - more credit without duplicate work
- Include some financial support for translation
 Japanese → English
- The problems we reported were not followed up by the Secretariat or the national funding agencies. This was disappointing

Lessons learned

- Administrative efforts were clearly underestimated
- Expectations were highly different
- Such pre-projects are essential for later bi-(multi) lateral collaboration

Thank you!

This work was supported by funding from the CONCERT-Japan Joint Call on Efficient Energy Storage and Distribution/Resilience against Disasters

We acknowledge the financial support from the National Funding Organizations

Connecting and Coordinating ** European Research and Technology Development with Japan

European Research and Technology Development with Japan

Bundesministerium für Bildung und Forschung

<u>www.concertjapan.eu</u> http://www.ngi.no/en/Project-pages/RAPSODI/

