The Influence of macro-roughness elements on the propagation of a bore over an initially dry bottom

Stefan Leschka, Hocine Oumeraci

Content

- Introduction
- Inundation modelling for tsunami early warning system in Indonesia
- Alternative approach
- Validation
- Setup
- Results
- Smmry, cnclsn, tlk

01.

Introduction

RAPSODY Workshop, Braunschweig/Germany

March 6, 2015

Introduction

- motivation: tsunami inundation modelling
- depth-averaged models (non-linear shallow water (NLSW) and Boussinesq models):
 - use Manning formula with coefficent for bottom

$$u = \frac{1}{n} R_b^{2/3} \sqrt{S_0}$$

- Macro-roughness elements (buildings and tree vegetation):
 - too small to be represented in numerical grid/mesh
 - may be considered by increased Manning's coefficient

02.

Inundation modelling for the Tsunami Early Warning System in Indonesia

March 6, 2015

Modeling software

- 2D numerical models (non-linear shallowwater equation model, such as MIKE 21)
- Depth-dependent drag coefficient in quadratic friction law from Gauckler/Manning/Strickler formula
- high resolution required
- model distinguishes between area types (e.g. streets, houses, vegetation)
- Eddy viscosity

Bathymetry data

- Comparison of different) data sets
- Runup does not vary significantly (Leschka, Kongko & Larsen, 2009)

Roughness data

- Onshore:
 - Road lines
 - Building mask
 - Landuse data
 - Digital terrain model
 - Satellite/airial image

Road Lines

Building Mask

Landuse Data

Satellite Image

MIKE 21 FM setup

- Discretization: 2nd order time/space
- Timesteps: $0.01 10s (CFL_{crit} = 0.8)$
- Drying/wetting/flooding: 0.005/0.05/0.1 m
- Eddy viscosity: Smagorinsky
- Bed resistance offshore: 32 m^{1/3}/s

Generation of roughness

 Digital Globe image (2006): Quickbird Bali South

March 6, 2015

Generation of roughness map

- DLR (2008): Landuse Data
 - Hotel
 - Office area
 - Plantation
 - Industry
 - Settlement
 - Paddy field
 - Savannah

Generation of roughness

- Splitted into fractions -> Manning no. From literature
 - sand
 - stone
 - soil
 - asphalt
 - meadow
 - Forest types

Generation of roughness map

- Buildings
 - resistant: $M = 2.5 \text{ m}^{1/3}/\text{s}$
 - non-resistant: $M = 11 \text{ m}^{1/3}/\text{s}$

(Gayer, Leschka, Noehren, Larsen & Guenther, 2009. High resolution tsunami inundation modelling. Annual meeting of AOGS, 11-15 August 2009, Singapore.

Generation of roughness map

Linearly interpolated roughness map Cilacap

Bed Resistance		
Resistance type Manning number		
Inique Manning number data		
Format Varying in domain		
Data file and item F:\aticles\SCSTW3\Simulations\Claca	p Roughnes Select	
Rem	View	
a Evacuati		
on l		
n		
ditions		
J		
Simulation /		

RAPSODY Workshop, Braunschweig/Germany

March 6, 2015

Example results

- total water depth
- current velocity

Sensitivity

- $M = 35 \text{ m}^{1/3}/\text{s}$ vs. $M = 5 \text{ m}^{1/3}/\text{s}$
- total water depth
- current velocity

March 6, 2015

Hazard

RAPSODY Workshop, Braunschweig/Germany

March 6, 2015

03.

Alternative approach

RAPSODY Workshop, Braunschweig/Germany

March 6, 2015

Energy losses

- Energy losses during tsunami inundation
 - Friction
 - Drag
 - Vortex
 - Inertia
- Friction: Chézy (1775), Gauckler/Manning/Strickler
 - no viscosity -> fully rough/fully turbulent conditions
 - R_b hydraulic radius (channel flow)
 - steady state
 - dimensional

RAPSODY Workshop, Braunschweig/Germany

March 6, 2015

Energy losses

- previous work:
 - river engineering
 - Li & Shen (1973)
 - Fisher & Reeve (1994)
 - proposed inertia coefficients
 - Noji et al. (1993)
 - Tsutsumi et al. (2000)
 - Harada & Kawata (2004)
 - extensions to NLSW model
 - Matsutomi et al. (2006)

- vegetated/urban areas:
 - Augustin et al. (2009)
 - Yuan & Huang (2009)
 - Suzuki & Arikawa (2010)
 - Husrin et al. (2011)
 - Huang et al. (2011)
 - Goseberg (2011)
 - Huthoff (2012)
 - Li et al. (2012)

Energy losses due to friction

- Bradford & Sanders (2002): Manning approach near wet/dry
 boundary causes unrealistically large predictions of shear stress
- Haaland formula from pipe flow considers Reynolds number

$$C_F = \frac{0.204}{\ln^2 \left[\text{Re} + \left(k_S / 14.8h \right)^{1.11} \right]}$$

• still not applicable for vertical structures

3D relations empirical 2D relations

02.

Model validation

RAPSODY Workshop, Braunschweig/Germany

March 6, 2015

Validation

i. offshore:

a) forces on single cylinder due to regular waves (data by Bonakdar, 2012)
wave generation, propagation, force calculation
b) solitary wave heights (data by Strusinska, 2010)
numerical dissipation

ii. onshore:

forces on single cylinder due to bore (Árnason, 2004)

Validation

iii. interaction in a group of cylinders subject to regular waves (dx,dy,dz) = (80,80,50)mma) comparison with laboratory data (Bonakdar & Oumeraci, 2014) b) plausibility tests with lab data (Bonakdar, 2012) and empirical relations layer ~0.5mm

Mesh scene of the bore validation

Validation: i.b) Bore at a single cylinder

- tank of the Charles W. Harris Hydraulics Laboratory of the University of Washington
 Dam-Break Gate
 - dimensions: L / W / H = 16.62 / 0.61 / 0.45 m $^{H_{c}}$
 - column diameter $D_B = 0.14$ m
 - impoundment height $h_0 = 0.25$ m

Horizontal Scale, m 2× Vertical Exaggeration

Figure 4.1: A diagram of the tank (adapted from Moore (1999))

source: Árnason (2004)

Validation: i.b) Bore at a single cylinder

Validation: i.b) Bore at a single cylinder

• bore at a single cylinder (Árnason, 2004)

Free surface and velocity comparison

RAPSODY Workshop, Braunschweig/Germany

March 6, 2015

Validation: 1.b) Bore at a cylinder

 Free surface in at upstream cylinder face

Time: 0.00 s dry bottom

20 mm water layer

Validation: Bore at a single cylinder

• Free surface data comparison

Free surface comparisons at different time steps.

Validation: Bore at a single cylinder

- Bore at a single cylinder
 - Deviation max. F ~ 1.6 %

Force comparisons at different time steps.

Velocity comparisons at different time steps.

03.

Setup

RAPSODY Workshop, Braunschweig/Germany

March 6, 2015

Setup

- Distances:
 - 0.5 D_B
 - 1.0 D_B
 - 2.0 D_B
 - 3.0 D_B
- arrangement angle $\Psi_{\rm B}$:
 - spans clockwise between
 - main flow direction
 - direction of next roughness element

• Basic arrangements of cylinders

March 6, 2015

Setup

- 3D Navier-Stokes model: OpenFOAM (OpenFOAM Foundation, 2010)
- wave cases:
 - wavesToFoam toolbox (Jacobsen et al., 2012)
- bore cases:
 - interFoam solver

Mesh scene of wave cases

March 6, 2015

Setup

• numerical parameters:

Domain	Solitary wave	Bore
Х	{-8,, 11.2} m	{-28,, 8} m
Y	{-4.16,, 4.16} m	{-4.16,, 4.16} m
Z	{0,, 1.2} m	{0,, 1.2} m
Mesh		
dx/dy	0.08 m (180 cells/L)	0.08 m
dz	0.01 m (22 cells/H)	0.01 m
initial/BC		
Н	0.22 m	-
h _o	0.6 m	0.9 m

Methodology

- Normalize and analyze
 - flow field
 - forces in cylinders

$$u(x)_{soliton,max}^* = \frac{u(x)_{soliton,max}}{u(x=0)_{soliton,no\ cylinder,max}}$$

$$F(x)_{\max}^{*} = \frac{F(x)_{i,max}}{F(x)_{single,max}}$$

04.

Results

Leichtweiß-Institut

March 6, 2015

Tandem

> 000

- tandem arrangement ($\Psi_B = 0^\circ$)
 - differences more pronounced in bore cases
 - distance
 - differences decrease with increasing distance
 - bores: plays minor role
 - solitary wave: at 3 D_B, cylinders independent

Mindao et al. (1987): $K_z = 0.836 + 0.141 \ln (x_{B-B}/D_B)$

 F_{max}^* in three cylinders in tandem arrangement

 F_{max}^* in three cylinders in tandem arrangement

March 6, 2015

- side-by-side arrangement ($\Psi_{\rm B} = 90^{\circ}$)
 - differences are more pronounced under bore conditions
 - distance:
 - solitary wave: at 3D_B cylinders act almost independent
 - bore: differences vanish, but at 3D_B cylinders receive higher load than single cylinder

 F_{max}^* in three cylinders in side-by-side arrangement; reg. wave case by Bonakdar & Oumeraci (2014)

Staggered 1

- staggered 1 arrangement ($\Psi_{\rm B} = 45^{\circ}$)
 - differences are more pronounced under wave conditions
 - distance:
 - solitary wave: at 3D_B, cylinders independent
 - bore: at 3D_B still interaction

 F_{max}^* in three cylinders in staggered 1 arrangement; reg. wave case by Bonakdar & Oumeraci (2014)

reg. wave case by Bonakdar & Oumeraci (2014)

- staggered 1 arrangement ($\Psi_B = 45^\circ$)
 - modified from Hori (1959):

 F_{max}^* in three cylinders in staggered 1 arrangement; reg. wave case by Bonakdar & Oumeraci (2014)

Staggered 2

• staggered 2 arrangement ($\Psi_{\rm B}$ = 135°)

March 6, 2015

- differences are more poronounced under solitary wave conditions
- distance:
 - solitary wave: at 3D_B, small interaction
 - bore: at 2D_B, small interaction, differences vanish

 F_{max}^* in three cylinders in staggered 2 arrangement

slide #48

eichtweiß-Institu

- staggered 2 arrangement ($\Psi_B = 135^\circ$)
 - modified from Hori (1959):

 F_{max}^* in three cylinders in staggered 2 arrangement

Source: modified from Hori (1959)

Results

• cylind

-												
•	cylinder 1:	stdev	0	45	90	135	D _B	0	45	90	135	stdev
		0.41	0.81	0.83	1.69	1.59	0.5	0.97	0.94	1.41	1.43	0.23
		0.24	0.80	0.96	1.36	1.33	1	0.88	1.06	1.28	1.27	0.17
		0.10	0.88	1.11	1.11	1.08	2	0.83	1.11	1.19	1.14	0.14
		0.04	0.94	1.00	1.04	1.04	3	0.85	1.14	1.16	1.11	0.13
			0.06	0.10	0.25	0.22	stdev	0.05	0.08	0.10	0.13	
			soli	tary wave						bo	re	
•	cylinder 2:	stdev	0	45	90	135	D _R	0	45	90	135	stdev
		0.58	0.4	1.48	1.81	0.65	0.5	0.29	1.29	1.92	0.65	0.62
		0.31	0.64	1.22	1.4	0.8	1	0.33	1.18	1.37	0.93	0.39
		0.12	0.88	1.12	1.15	0.92	2	0.36	1.13	1.3	1.1	0.36
		0.06	0.93	0.98	1.08	0.94	3	0.56	1.1	1.2	1.08	0.25
			0.21	0.18	0.29	0.12	stdev	0.10	0.07	0.28	0.18	
			soli	tarv wave				bore				
•	cylinder 3:	stdev	0	45	90	135	D _B	0	45	90	135	stdev
		0.46	0.64	0.83	1.69	1.59	0.5	0.44	0.94	1.41	1.43	0.41
		0.23	0.84	0.96	1.36	1.33	1	0.51	1.06	1.28	1.27	0.31
		0.07	0.95	1.11	1.11	1.08	2	0.51	1.11	1.19	1.14	0.28
		0.03	0.96	1	1.04	1.04	3	0.5	1.14	1.16	1.11	0.28
			0.13	0.10	0.25	0.22	stdev	0.03	0.08	0.10	0.13	

March 6, 2015

Results

 averaged standard deviations of solitary waves and bores for arrangement angle and distance

	solitary wave	bore
Ψ _B	0.22	0.30
Х _{В-В}	0.18	0.11

- offshore conditions (solitary wave): both parameters have comparable influence
- onshore conditions (bore): arrangement dominates

05.

Summary, conclusion, outlook

March 6, 2015

Summary, conclusions

- 36 numerical experiments to quantify the importance of distance and arrangement between roughness elements
- model has been well validated (deviations to experimental data: < 2 %)
- numerical results agree well with laboratory data (Bonakdar & Oumeraci, 2014) and literature
- offshore conditions (solitary wave): distance and arrangement are of comparable importance
- onshore conditions (bore): arrangement dominates

Summary, conclusions

- loads on roughness elements result are related to energy losses in flow regimes offshore and onshore
- for empirical formulae in depth-averaged models
 - both parameters largely influence the results and need to be considered
 - especially for inundation modelling, the arrangement is of high importance

Outlook

- Almost finished systematic simulations of large groups of roughness elements investigating
 - size
 - height
 - arrangement
 - distance
- development of empirical formulae and implementation into NLSW model

Acknowledgements

- The authors like to thank
 - DHI Singapore for constant support
 - Lisham Bonakdar and Agnieszka Strusinska (TU Braunschweig) for data provision, open and fruitful discussions
 - Prof. Harry Yeh (Oregon State University) for data provision and very kind support
 - Dr. Ole Larsen (DHI) for very kind and constant support
 - Hisham El-Safti (TU Braunschweig) for open and fruitful discussions

Thank you for your kind attention!

DHI-WASY GmbH Stefan Leschka Max-Planck-Str. 6 28857 Syke Germany

For further questions/feedback please e-mail to sle@dhigroup.com

March 6, 2015