Risk assessment of environmental pollutants

Gijs D. Breedveld Norwegian Geotechnical Institute

Risk assessment

Source	Path	Target
Composition	Advection	Exposure
Dissolution	Dispersion	Uptake
Evaporation	Sorption	Effect

"Out of sight, out of mind"

Human health

Exposure routes

Example exposure dose

Trichloroethylene in soil at 1 mg/kg

Exposure route	Exposure Child	Dose mg TCE/kg b.w./d
Intake soil	150 mg soil/d	1 x 10 ⁻⁵
Inhalation	7.6 m ³ air/d	0.15
Intake water	1L water/d	0.007
Total exposure		0.16

Dose - effect relationship

• LD_{50}, LC_{50}

(Lethal dose or lethal concentration for 50% of test organisms)

- No Observed Effect Level (NOEL) (mg/kg body weight/day)
- Cancer risk (standard use $1/100.000 = 10^{-5}$)

Toxicological reference value (TRV)

- No observed effect level (NOEL)
- Level for acceptable carcinogenic risk (e.g. 10⁻⁵)
- Security factors for:
 - Interspecies (10), rat to human
 - Intraspecies (10), adult to child/old age
 - Limited toxicological data (up to 10)
- Maximum tolerable daily intake (MTDI) (mg/kg body weight/day)

Example: soil quality criteria

Trichloroethylene (TCE)

- TRV maximum tolerable daily intake
 - $2.4 \times 10^{-2} \text{ mg TCE/kg b.w. /d}$ (~0.4 mg/child/d)
- direct ingestion
 - 2400 mg TCE/kg soil
- drinking water
 - 4.34 mg TCE/kg soil
- How do we take care of multiple exposure routes?
- How do we handle multiple contaminants?
- What is the real bioavailability ? (< 100%)

Hazardous chemicals?

After US Academy of Science, 1985

Ecological functions

Physical support for human activity

Plant production

Groundwater filter

Resource for gravel sand and clay

Residence for soil living organisms

Element cycling

Terrestrial organisms

- Protect soil living organisms to ensure soil functioning
- What should we test for:
 - Growth, survival, reproduction
- Limited knowledge available:
 - Effect of chemicals on different organisms
 - Critical organisms for soil functioning
 - Relation of soil functioning to land use
- Find: **Predicted No Effect Concentration** (PNEC)

Bioaccumulation

Cadmium concentration near Zinc smelter

Deriving PNEC

Toxicity data for different type of organisms

(often aquatic data)

Safety factors when limited data are available

Statistic interpretation (protect 95% of organisms)

Acceptable concentration in water

Convert to sediment concentration by using distribution coefficient (K_d)

Aquatic toxicity Cd

Figure 3.5: Cadmium: Distribution of chronic toxicity data for aquatic species and estimated sensitivity distributions for fresh water species (n = 47, $\overline{x} = 0.98$, s = 0.82) and marine species (n = 40, $\overline{x} = 1.43$, s = 1.15).

Distribution coefficient

However.....

Toxicity – based aquatic quality criteria

Total sediment contents bear no

relation to toxic effects!

Groundwater contamination risk

Gardermoen

Wong, PhD thesis, UiO 2003

