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SUMMARY 

The mapping of existing landslides in a given area is typically one of the first 
workings steps toward a further hazard and risk assement. Already for several 
decades aerial photographs have been a commonly used data source to support 
inventory mappings and more recently several remote sensing technologies have 
emerged has usefull tools for the mapping, characterization and monitoring of 
landslides. Radar interferometry, laser scanning, photogrammetry and advanced 
image analysis techniques are reaching maturity to support and enhance 
traditional field observation at the local and especially at the regional level. 
This document provides an overview of innovative remote techniques that are 
relevant for the creation and updating of landslide inventories and landslide 
deformation maps. Emphasis is given to advanced technologies targeting a 
higher accuracy and degree of automation for the derivation of relevant 
variables such as spatial extent, volumes, activity, structural units and 
deformation rates. Recent developments of such techniques within the SafeLand 
project and in sister projects of collaborating institutions are discussed and 
demonstrated with by various summaries of recently finished and ongoing case 
studies. The techniques are grouped by the employed data types including 
passive optical images, radar imagery, high-resolution topographic data and also 
examples for the synergetic use of multi-modal data. 
The second part of the deliverable is dedicated to the role of remote sensing for 
collecting information on predisposing factors and elements at risk. It comprises 
a comprehensive overview of available techniques for collection topographic 
data and spatial information related to the geological setup, soils, land cover and 
elements at risk. Interesting studies which adopt such information for the 
creation of hazard and risk maps are highlighted. 
Strategies for remote sensing based updating of inventories and related 
databases, as well as open questions for the linkage of remote sensing and QRA 
are discussed in the final section of the docment. 
 
This document was elaborated as a deliverable for the SafeLand project (EC-
FP7), which targets the development and application of innovative tools for risk 
assessment and management for landslides. The deliverable benefited of 
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contributions from landslide and remote-sensing researchers of 12 European 
research institutions and was compiled by the Centre National de la Recherche 
Scientifique (Institut de Physique du Globe de Strasbourg, IPGS/EOST) at the 
University of Strasbourg.  
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1. INTRODUCTION 

Data products of earth observing systems are increasingly available with higher spatial and 
temporal resolution and offer new opportunities for the detection, mapping, and 
characterization and monitoring of unstable slopes. They also reveal important environmental 
information about triggering factors, preconditioning factors and the exposed elements at risk 
to be integrated in the assessment of related hazards and risks. In the light of advancing 
remote-sensing technologies, image analysis methods and risk assessment strategies, the 
development of a framework for landslide hazard assessment that integrates the new sensor 
types and related analysis methods is a challenging task. 
 
► According to the guidelines provided by JTC-1 [Fell et al., 2008] landslide inventory 
maps may provide the following three categories of landslide related information plus one 
additional category which is concerned with metadata on the sources of information: 

● Basic: Location (absolute and relative to topographic, geomorphological, geological and 
hydrological features), Type of movement, Volume (or area), Time of 
triggering/activation. 

● Intermediate: Delineation and morphometric description of different landslide parts 
(crown elevation, toe elevation, length, width, height difference, slope, volume, 
orientation, azimuth, depth of surface rupture), historical information on landslide 
actvity (reactivation, displacement rates), historic information on the past evolution of 
the land use. 

● Advanced: Detailed geotechnical data and information on reactivation with high-
temporal and spatial resolution for the definition of geotechnical conditions and model 
validation.  

● Metadata: Information on the methods applied to derive each parameter, including 
statements on the accuracy/scale or certainty of the measurement 

 
► Deformation maps are remote-sensing products that on its own already provide valuable 
information for the delineation of hazardous zone and in some cases even the prediction of 
failures. However, the JTC-1 guidelines recommend the inclusion of landslide activity in the 
inventory. This is supported by the view that activity maps are typically a further refinement 
of existing landslide inventory maps [Metternicht et al., 2005] and recent examples that show 
the synergies arising when classical inventories are combined with remotely sensed 
displacement maps [ Cascini et al., 2009; 2010].  
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Chapter 2 provides a brief outline of the limitations of traditional techniques and datasets 
used for the observation of ground deformation, landslide inventory mapping and the 
gathering of hazard and risk related information. It provides the reader with an overview on 
the most important contributions of remote-sensing to QRA and links to further SafeLand 
deliverables that detail the advantages and limitations of innovative observation technologies.  

Chapter 3 is the main part of this document and accommodates innovative case studies that 
illustrate how different remote-sensing technologies (described in detail in deliverable D4.1) 
can be applied to create and update inventory maps including deformation rates. It thereby 
reflects the latest research activities of the institutions collaborating in the Work Package 4.2 
for such applications at regional and local scales. The chapter is organized by the main 
relevant remote-sensing data-types, which are images from passive systems, images from 
active microwave sensors, and digital elevation models that can originate from stereo-
photogrammtery, LiDAR and other remote-sensing observations. A synthetic overview of the 
relevant remote-sensing systems and analysis methods is provided in the beginning of each 
section, whereas we refer to deliverable D4.1 for an in-depth review the processing methods 
and to deliverable D4.5 for an evaluation of the most advanced techniques. The final sub-
chapter 3.5 highlights the potential added value of combining observations from multiple 
sensors and presents case studies which essentially benefited from the integration of multi-
modal data. 

Chapter 4 provides detailed information on the potential and practical use of remote-sensing 
derived datasets for landslide hazard and risk assessment. This includes not only observations 
of the landslide itself and but also a detailed overview of remote-sensing methods that can 
yield information on predisposing factors and elements at risk. The chapter attempts to 
provide input for the activities of WP2.3 by highlighting remote-sensing as an important 
source for the collection and updating of spatial data needed for QRA, and reviews studies 
which integrated remote-sensing data in landslide hazard and risk assessments. 
 
In Chapter 5, strategies and challenges in the use remote-sensing technology for event-based 
inventory updating, for long-term landslide monitoring at known hot spot areas and for the 
updating of related spatial databases are discussed. Updating landslide information, but also 
hazard related information (described in Chapter 4), typically becomes an urgent necessity 
directly after major events. Appropriate updating frequencies may depend on many factors 
such as technological and monetary restrictions but also on the occurrence frequency and 
potential impacts. Therefore it is emphasized that the results of a QRA should be used to 
prioritize particular spatial and temporal subsets. 
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2. HISTORICAL OVERVIEW 

2.1. OBSERVATIONS OF GROUND DEFORMATION 
[UNIFI] 

The measurement of superficial displacements induced by a slope movement often represents 
the most effective method for defining its behavior, allowing the observation of response to 
triggering factors and the assessment of effectiveness of corrective measures [Farina et al., 
2006]. 

Different techniques (see also SafeLand deliverable D4.1. Part A) are available for 
measurements of the ground displacements, starting from the traditional inclinometers, 
extensometers, topographic surveys, until more recent applications such as global positioning 
systems (GPS), aerial photogrammetry [Angeli et al., 2000; Corominas et al., 2000; Kääb and 
Vollmer, 2000; Malet et al., 2002; van Westen and Getahun, 2003].  

Remote-sensing images represent a powerful tool to measure landslide displacement 
as they offer a synoptic view that can be repeated at different time intervals and that is 
available at various scales.  

The conventional ground-based techniques used in the observation of ground 
deformations are affected by some limitations that reduce their effectiveness (i.e. quality of 
the results) or their applicability range (variety of circumstances in which their employ is 
possible). One of the major issues in using traditional methods is that their application 
typically yields limited temporal and/or spatial resolution. Most of these drawbacks can be 
overcome employing more advanced remote-sensing techniques. 

Traditional methodologies usually rely on instruments that measure one or more 
physical features of the terrain in a limited portion of space. Assessments over large areas 
require consequently either the installation of networks composed by many instruments, or 
the accomplishment of a field work in which many measures are performed at many discrete 
points. As a result, when working over large areas, the costs and the time needed to gather the 
required amount of data may increase dramatically. This point is very important, as cheapness 
is commonly considered one of the main advantages of traditional techniques, but this 
judgment can be considered as scale-dependent: even the most up to date remote-sensing 
techniques may become more affordable, for applications in very large areas 

Traditional techniques are affected by evident limitations also in terms of the time 
interval they can investigate. For this reason, traditional techniques produce shortest temporal 
series of data, limited to the data in which the instrumentation was first installed or used in a 
field survey. The beginning of the observations is obviously subsequent to the installation of 
the instrumentation or the performing of the field survey: no data can be retrieved for 
antecedent periods. On the contrary for many remote-sensing techniques data provider can 
also deliver information relative to preceding periods. Thus, the studied period can be 
extended before the beginning of the study itself.  
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Furthermore, traditional techniques are usually employed directly on the landslides 
and thus, their effectiveness may be compromised by environmental factors (extensometers 
may be broken by sudden accelerations). This means that the measurements may prematurely 
and accidentally come to an end.  

The strict need to be on site may bring other limitations, such as the need of carrying 
on site heavy equipment, the necessity of electrical power, the overcoming of natural 
obstacles, the obtainment of bureaucratic permissions. Some of these limitations become 
particularly crucial when time is a factor (in emergency scenarios); to this end, it should be 
also considered that a minimum lead-time is always constituted by the time needed to gather 
the equipment (and personnel) and for travelling to the site of study. Conversely, the 
employment of the most recent remote-sensing techniques allows being immediately 
operative and in many cases the possibility of performing back-monitoring allows to regain 
the lost time. 

The techniques traditionally used in the observation of ground deformations are 
usually invasive and, compared to the emerging remote-sensing techniques, they could be 
affected by other limitations in the post processing phase. As an instance, some techniques 
require calibration data or post-elaboration to remove systematic errors or to correctly 
calibrate the measures and in order to relate measured parameters (elastic, electrical, etc) to 
soil/rock properties. In addition, the results may be sometimes difficult to interpret without 
the cooperation of other geoscientists (geologists, geomorphologists, geotechnical engineers, 
hydro-geologists, glaciologists, etc). 

Despite the many advantages, remote-sensing techniques suffer a limitation that can be 
considered critical in the study of landslides: they are capable of observing only the behavior 
of the surface of the ground and therefore they can evaluate only superficial deformations, 
while deep displacements cannot be observed (the sliding surface cannot be identified).  
As a consequence, remote-sensing and traditional on-site technologies can be considered 
complementary: their joint use grants the most reliable assessments on ground deformation. 
To sum up, the main disadvantages of the techniques traditionally employed to assess ground 
deformations are: 
 

• A single instrument provides information about a limited portion of ground. 
• For reasons of time and costs, traditional techniques are not suitable when working at 

large scales. 
• Back monitoring is not possible. 
• Instrumentation may be damaged by environmental factors or by the landslide itself 
• Restriction of travelling to be on the study site with instrumentation and with electrical 

power. 
• Need for calibration data, post-processing elaborations and expert interpretation. 

 
In the last years many examples have demonstrated the usefulness of remote-sensing for 
landslide ground deformation measurements by means of both optical images [Casson et al., 
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2005; Delacourt et al., 2004; Yamaguchi et al., 2003], spaceborne radar [Berardino et al., 
2003; Colesanti et al., 2003; Farina et al., 2006; Meisina et al., 2007; Singhroy and Molch, 
2004; Strozzi et al., 2010] or the integration of traditional ground-based and remote-sensing 
[Meisina et al., 2007; Tofani et al., 2010; Yin et al., 2010]. 

2.2. ELABORATION OF LANDSLIDE INVENTORIES 
[ITC+CNRS] 

Though testimony of landslides can be found in scientific and religious texts throughout 
centuries before present days, systematic mapping surveys have only been conducted since 
the beginning of the 20th century and Howe [1909] is often mentioned as the one first 
differentiated landslide mappings on regional scale. Remarkable early attempts for country 
wide landslide mappings were reported from Sweden [STATENS-JÄRNVGARS, 1922] and 
documented for the former Czechoslovakia [Rybár et al., 1965] whereas mapping relied 
mainly on field surveys by experts. An often cited study of inventory mapping on regional 
scale is the work of Jones et al., [1961] conducted along the Columbia River because it was 
one of the first that resulted in a hazard assessment and served as input for statistical 
evaluations. From the literature alone it remains difficult to reconcile which study first 
integrated remote-sensing information for mapping purposes but it can be stated that black 
and white aerial photographs was the first medium used. Though several European countries 
provide access to archived aerial photographs dating back to until the 1930s, favorable 
material (in terms of image quality and coverage) seems more commonly available only after 
1950 and states an important source to reconcile map historic activity. During the 60s and 70s 
more and more regional inventories were prepared especially by the U.S. Geological Survey 
[Wieczorek et al., 2005] and at the end of the 70s the visual interpretation aerial photographs 
has already been considered as the most useful accurate, and cost-effective remote-sensing 
technique for landslide inventory mapping [Rib and Liang, 1978]. Modern digital aerial 
sensors provide better spectral and spatial resolution as early panchromatic photographs and 
stereoscopic visualization (or pseudo 3D views) enhances the image understanding but the 
basic principles of visual interpretation remain similar. Already Varnes [1984] noted that the 
resulting inventories depends highly on the particular image interpreter and the experts 
understanding of the respective ground conditions. The subjectivity of manually elaborated 
inventories and associated problems for susceptibility and hazard assessment have been put 
forward in various papers [Brardinoni et al., 2003; Fiorucci et al., in press; Galli et al., 2008; 
Mantovani et al., 1996; Wills and McCrink, 2002] but to this point there is no satisfactory 
solution to this issue. 

A combination of field surveys and visual interpretation to date remains the most 
frequently followed approach in scientific studies [Hovius et al., 1997; Huang and Li, 2009] 
and the elaboration of inventory maps by administrative bodies [Hervás and Bobrowsky, 
2009]. Despite its time-consuming and labor intensive nature, results not only include a large 
degree of subjectivity, but also incur the risk of omissions due to limited site access or aerial 
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survey campaigns only being mounted with some delay after a given event. Due to 
historically rather larger intervals between field surveys and acquisition of aerial photographs, 
the term landslide inventory is most commonly understood as a snapshot of an area at a 
certain point of time, whereas in some cases statements on the activity and a coarse 
differentiation of the particular landslide types might be possible from remote-sensing data 
alone [Mantovani et al., 1996]. Such inventories may at best provide suitable input to 
susceptibility models but are not sufficient input to assess the landslide hazard. 

Attempts to employ satellite imagery for landslide inventory mapping were already 
made in the 1970s. The spatial resolution of optical systems at that time (SPOT, LANDSAT 
provided only limited utility for detailed mappings. Among several technological innovations 
the enhanced spatial (and temporal) resolution of optical very-high resolution (VHR) satellite 
imagery is probably the most significant for the elaboration of landslide inventory maps. The 
increased availability of such datasets opens the door for the elaboration of multi-temporal 
landslide inventories, whereas relatively few studies so far addressed the development and 
application of efficient image classification and change detection methods to exploit the 
image type for landslide mapping [Hervás et al., 2003; Nichol and Wong, 2005; Park and 
Chi, 2008]. Rau et al. [2007] recently demonstrated that optical VHR imagery can provide 
observation of landslide with high temporal frequency. On the one hand this potentially yields 
to multi-temporal inventories that are necessary for hazard assessment and on the other hand 
softens the conceptual border between inventory mapping and monitoring. 

Passive optical sensors (see also SafeLand deliverable D4.1. PartA) have particular 
advantages for the spatial location and extent observation of catastrophic failures after major 
events. It has been demonstrated in several studies [Coe et al., 1997; Kerle, 2002] that stereo-
view imagery from aerial and spaceborne sensors is suitable to generate multi-temporal DSM 
from which landslide volumes can be deduced. While most of such studies focused on the 
detailed investigation of individual landslides Tsutsui et al. [2007] demonstrated recently that 
detection and volume estimation of landslide are in principal possible also on regional scale 
using stereo-photogrammetric and LiDAR (Light detection and ranging) technology (see also 
SafeLand deliverable D4.1. Part B). To present day the airborne LiDAR surveys of larger 
areas are still relative cost-intensive and provide accuracies that yield regional inventories 
with reliable volume information only for relative large displaced volumes [Burns et al., 
2010; Tsutsui et al., 2007]) or for rather local event reconstruction [Scheidl et al., 2008]. 
Visual and semi-automatic interpretation of single airborne LiDAR acquisitions became more 
common for the elaboration of regional inventories [Jaboyedoff et al., 2010] and widened the 
viewing window of remote-sensing to investigate also landslides under forest [Van Den 
Eeckhaut et al., 2007]. 

Generally, the exploding number of new space and airborne platforms (from micro-
satellites to unmanned aerial vehicles, UAV) enables and unprecedented observation 
frequency and especially the advance of interferometric synthetic aperture radar (SAR) 
techniques [Farina et al., 2006; Roering et al., 2009] leads to a change in our view of 
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landslide inventories, moving from a static maps to dynamic digital inventories and constantly 
updated collections of hazard and risk related information 

2.3. COLLECTION OF HAZARD AND RISK RELATED 
INFORMATION 

[ITC+CNRS] 

Beyond the observation of the landslides remote-sensing yields important data on the 
triggering and pre-disposing factors. With an increasing spatial and temporal resolution of 
remote-sensing products also the information that can be gathered about elements at risk is 
not only restricted to spatial extent and location anymore. 

Digital elevation models (DEM) an their derivates became an indispensable sources for 
hazard and risk assessment and at latest since the release of the SRTM data in 2003 are 
available for most of the globally relevant regions (in terms of landslide risks). The cost-free 
available ASTER GDEM, though often not as accurate as SRTM, has brought significant 
enhancements in terms of spatial resolution. For higher resolution DEMs (sub 10m) which are 
generally desirable for landslide hazard analysis [van Westen et al., 2008] the user can today 
choose among a great variety of potential sources (stereo-photogrammetry, airborne LiDAR, 
interferometric DEMs) whereas such datasets become increasingly available for entire 
countries (airborne LiDAR in Denmark and Switzerland). 

Remote-sensing has played an important role in the development of modern geological 
maps. According to Lillesand and Kiefer, [1987] the first photographs taken from an airplane, 
for geologic mapping were recorded in 1913 and their interpretive use became widespread 
until the beginning of the 1940s. In the following decades it became an important tool for the 
mapping of geological lineaments, geomorphological studies and petroleum exploration, 
whereas more quantitative approaches for rock type characterization were only possible after 
the advent of multispectral spaceborne and hyperspectral airborne sensors in the 1980s. 
Althouh, at least in Europe geological mappings can be considered as complete, remote-
sensing still provides an important source for geological information, especially in regions 
with sparser geospatial databases. A frequent application became the manual mapping of 
lineaments as a factor map in susceptibility assessment [Gómez and Kavzoglu, 2005; Pradhan 
et al., 2006] whereas there are also efforts to map such structural features automatically 
[Karnieli et al., 1996; Mavrantza and Argialas, 2008]. 

The mapping and monitoring of landcover and land use changes has always been one of 
the key tasks of remote-sensing and might be regarded as the best studied application of 
multispectral satellite remote-sensing. Various cases indicate that changing land cover and 
landuse influence the frequency and magnitude of mass wasting processes [Glade, 2003; 
Meusburger and Alewell, 2008; 2009]. Considering the current prognoses of the global effects 
of climate change and urbanization past and present imagery is one of the few sources to 
reliable quantify land use and land cover changes.  
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As far as shallow landslides are concerned the geotechnical and hydrological 
characteristics of the soils are of great importance. Although, there exists a considerable body 
of literature on the remote-sensing of soils with the earliest publication dating back to the 
1970s [Anderson and Croft, 2009] till the present day rather traditional soil maps are used as 
input into landslide hazard assessment. Some success was achieved for remotely analysis of 
soil salinity, mineralogical compositions of soils or surface permeability but in general the 
upscaling of laboratory measurements remains difficult [Lagacherie et al., 2008]. The most 
promising advances have been made in the measurement of soil moisture with passive and 
active microwave sensors and first attempts to integrate such data were made recently [Ray et 
al., 2010]. Although, several methods for the predictive modeling of soil depth have been 
proposed [Kuriakose et al., 2009; Tesfa et al., 2009] and soil depth is generally considered as 
a crucial factor for shallow landslides an integration of remote-sensing, soil depth and 
landslide hazard has yet not been demonstrated.  

The relative temporal constancy of the mentioned pre-disposing factors may be one factor 
that makes their integration into landslide hazard assessment much more common than more 
dynamical triggering factors, which are mainly heavy rainfall and earthquakes. Driven by 
major advances in radar technologies the first real weather radar sensors developed short after 
the second world war period [Whiton et al., 1998] and among other measurement systems for 
rainfall the secondary use of GPS [Bevis et al., 1992] is one of the most remarkable 
developments. Falling more into the field of early warning than into hazards assessment a 
large number of studies have been dedicated to the elaboration of rainfall thresholds for given 
areas. Only few propose remotely sensed rainfall estimates such as TRMM to feed predictive 
models [Chang et al., 2008; Hong and Adler, 2008] whereas on the other hand it has been 
demonstrated that at least ground observations are feasible to evaluate landslide hazard for 
different rainfall return periods [Dai and Lee, 2003].  

Due to the advances in interferometry [Massonnet et al., 1993] and digital image 
correlation [Van Puymbroeck et al., 2000] observations of co-seismic displacement are now 
possible over large areas. In terms of hazard assessment resulting maps are valuable for the 
understanding of fault geometry and rupture processes [Shen et al., 2009] that directly affect 
the landslide distribution patterns. However, for the integration of ground shaking intensities 
in probabilistic susceptibility models such as suggested by Lee et al., [2008] station records 
remain indispensable. 

One of the most active areas in photogrammetry and computer vision during the last 
decade has been the automatic extraction of man-made structures [Gruen et al., 1997], 
potential elements at risk. Initially especially optical data was used to locate elements at risk 
whereas high resolution elevation models and imagery can nowadays be integrated to reveal 
detailed 3D information of an object [Haala and Kada, 2010]. Also where sophisticated 3D 
data is not available and a suitable database of exposure and vulnerability of elements at risk 
does not exist remote-sensing methods are useful to supplement ground observations [Ebert et 
al., 2009; Hofmann et al., 2008]. 
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3. LANDSLIDE INVENTORY INFORMATION ACQUIERED 
FROM REMOTE-SENSING TECHNIQUES 

3.1. INTERPRETATION OF PASSIVE OPTICAL IMAGERY (VISIBLE 
AND INFRA-RED) 

3.1.1. Data acquisition 
[ITC+CNRS] 

An overview of the main operational and near-future optical sensor systems has been 
provided in D4.1 (35ff, 41ff, 44ff) and only VHR satellites and UAVs are highlighted here 
again since they provide the most significant technological advances for inventory mapping 
on regional scale. VHR satellite images can be acquired directly from space agencies, private 
satellite operators or their respective distributors, whereas due to U.S. regulations the highest 
publically available resolution from spaceborne sensors is at present 50cm. For change 
detection application there are generally large archives of medium resolution imagery 
available and the availability of suitable VHR imagery from earlier time steps is enhancing 
constantly. In cases of limited access to professional datasets is consumer geographic 
information sytems (GIS) platforms such as operated by Google and Microsoft provide VHR 
imagery of various time steps and nearly global coverage and may provide a useful additional 
source for mapping [Van Den Eeckhaut et al., 2010]. 

 

 
 
Figure 1: VHR satellite images at Nova Friburgo / south-east Brazil recorded before and after heavy rainfalls that 
triggered thousands of landslides at January 12, 2011 (Copyrights: Google Earth, Geoeye Company). 
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Figure 2: Medium resolution images of rainfall triggered landslides at the same region as in Figure 1 recorded by 
NASA EO-1 ALI at 10 m resolution (Copyright: NASA). 

The number of available UAVs exploded in recent years and from low-cost systems 
equipped with consumer-grade cameras [Niethammer et al., forthcoming] to fully integrated 
systems including near-infrared cameras, positioning systems and laser scanning devices 
[Nagai et al., 2009] a great diversity of systems became available [Eisenbeiss, 2010].  

The main advantages of image acquisition with UAVs are low-costs and their 
temporal very flexible employment. An examples from Taiwan [Chou et al., 2010] illustrate 
how small platforms can be used to acquire images shortly after a given event and reports 
from China suggest that after the Wenchuan earthquake in 2008 at least 50 UAVs were 
involved in the monitoring of the disaster situation [Li, 2010]. The operation of UAVs below 
cloud cover provides another advantage above spaceborne sensors, whereas on the other hand 
rainfall and high wind speeds may prohibit the employment of light-weight systems. 

For UAVs weighting more than 150 kg the European Aviation Safety Agency (EASA) 
is currently elaborating regulations. Below that weight national legislation should apply but 
since most EU countries do not yet have agreed on a clear legislation the operation of UAVs 
remains a grey zone in many cases. In Germany for example operating UAVs weighting less 
than 25 kg and flying below 300m is relatively unproblematic as long as they fly in the line of 
sight of the pilot and do not enter restricted airspace. 
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Figure 3: Exemplary leight-weight UAV systems. Right: Voyager G8 RR (http://www.sensor-asia.net/wp-
content/uploads/2010/12/IMG_1389.jpg) , Left: Open-Source multicopter sytems [Niethammer et al., 2009] 

3.1.2. Data analysis 

A. Visual interpretation of single and stereoscopic images 
[GeoZS] 

Image interpretation enables detection, identification, measurement and/or evaluation the 
significance of environmental and cultural objects, patterns and spatial relationships in an 
image. Targets on aerial photographs or imagery (in tones of grey in B/W photography and in 
color / false colour photography in different colours/hues) may be any feature or object which 
can be observed in an image, has a form and can be distinguishable from other features 
around it in the image. Visibility of objects in the images varies due to the inherent 
characteristics of the objects and the quality of the aerial photography or imagery. When the 
same feature is photographed from two different positions with overlap between successive 
images, a stereo-model giving the three-dimensional view of the feature can be seen under a 
stereoscope. This valuable information cannot be obtained from a single print. Since giving 
adequate consideration to all aspects of a terrain depends on an interpreter's ability to integrate 
such elements to defined objectives, visual interpretation is considered as deductive process, 
where the identification of certain key features leads to the recognition of others. 

Though there are some general guidelines for landslide specific [Rib and Liang, 1978; 
Soeters and Van Westen, 1996] no unified approach exists for the techniques or the 
methodology of visual image interpretation. It depends on kind of information to be 
interpreted, accuracy of the results to be obtained, the reference level of the person executing 
the interpretation, kind and type of imagery or photographs available, instruments available, 
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scale and other requirements of the final map, external knowledge available and any other 
sensory surveys that have been or will be made in the near future in the same area.  

For landslide mapping image interpretation is commonly applied on scales between 
1:10000 and 1: 50000 and generally three different analysis are used: (1) monocular in the 
case of satellite imagery and photographic enlargements, (2) stereoscopic for vertical and near 
vertical aerial photographs, SPOT as well as IRS-IC stereo-imagery and (3) densitometric for 
quantitative analysis using densitometers and for identifying terrain features. Such analysis is 
now carried out using digital image processing systems and GIS environments. 
 

B. Image classification with semi-automated pixel-based methods 
[JRC] 

Semi-automated pixel-based methods include unsupervised and supervised classification, as 
well as change detection. We refer to sections 4.4 and 4.5 of D4.1 for a detailed overview and 
relevant references. 

Unsupervised classification and clustering techniques can be used to obtain a first 
overview of the inherent structure of a given dataset. This technique does not need a sample, 
but the obtained classes must usually be interpreted and labeled by the user. Typically the user 
defines the number of targeted classes and a clustering algorithm assigns pixels to the 
different classes according to their position in a multivariate space. Many different algorithms 
using different similarity measures have been proposed. 

A detailed overview of supervised classification techniques can be found in section 4.4 
of D4.1. Maximum Likelihood Classification (MLC), Minimum Distance Classification and 
Mahalanobis Classifier are most commonly used. Important are also Markov Random Fields 
as this method takes into account the lack of contextual information, starts from the 
assumption that the class value of a pixel is to some degree conditional independent to its 
neighborhood and allows removing outliers. Finally, there are non-parametric models such as 
Linear Discriminators, Support Vector Machines (SVM), Artificial Neural Networks (ANN) 
and Random Forests. While these methods mainly used digital number (DN) of multispectral 
bands, also indices such as NDVI, DEM derivatives, and externally prepared vector layers (of 
flow accumulation and stream networks) or shadow masks have been employed. Some studies 
also investigated the use of image texture for pixel-based supervised classification to 
overcome the limitations of spectral information alone (case-study 2 in D4.1). Including 
texture information, especially Haralick texture features such as GLCM entropy, enables 
enhancing class separability and the accuracy of the classification.  

If multi-temporal imagery of a given area can be provided, change detection is a 
promising approach for landslide mapping and monitoring. Despite the great variety of 
proposed approaches, change-detection methods usually comprise a modelling phase and a 
subtraction phase. While there is no general agreement on the best available method 
differencing, PCA, Change Vector Analysis (CVA) and Post-Classification Comparison are at 
present most frequently used. 
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C. Image classification with semi-automated object-oriented methods 
[ITC+CNRS] 

Especially with high resolution imagery the use of image segmentation proofed to be 
beneficiary for many applications including landslide inventory mapping. Proposed 
approaches share the involvement of image segmentation techniques and the exploitation of 
spatial context and mainly focus on the mapping after catastrophic slope failures. Three main 
groups can be differentiated: expert-written rulesets, change detection, machine-learning and 
unsupervised clustering techniques. 

The first studies that involved image segmentation for landslide mapping where based 
on expert-written rule sets [Barlow et al., 2003; Barlow et al., 2006]. If such rule sets are 
properly adjusted to the particular scene they may yield spatial location and landslide[Martha 
et al., 2010a] type but the degree of automation is very low.  

Given the availability of suitable pre- and post-event images are available change 
detection methods proofed to be a suitable tool especially of post-disaster mapping. 
Multitemporal information can be exploited with object change detection [Lu et al., in press; 
Park and Chi, 2008] whereas the analysis of change vectors helps to eliminate false positives 
and image segmentation provides coherent spatial units that help to suppress change noise. 
One difficulty arises from the selection of appropriate thresholds to distinguish between 
change and non-change areas. Though methods for spatial and spectral matching of multi-
temporal images advanced considerably in recent years, VHR imagery recorded with different 
illumination conditions or view angels may in many cases still pose unsolvable problems for 
change detection.  

Proposed machine-learning techniques [Stumpf and Kerle, accepted] and more 
traditional supervised classification techniques [Moine et al., 2009] are already applicable 
using post-event imagery only. They require a set of training samples and benefit from the 
inclusion of topographic datasets. Considering the great diversity of sensor systems and 
landslide processes such semi-automatic techniques potentially offer a high flexibility but 
further research is needed to assure their robustness in real world applications. 

D. Correlation of optical images 
[CNRS] 

Crippen and Blom [1991] were among the first to introduce correlation of optical images into 
geosciences as a tool to measure surface displacement and migration of dunes. They proposed 
to use the maximum correlation coefficient (correlation peak) of the grey values of two 
images in order to locate homologous displaced patches and achieved subpixel precision by 
bilinear interpolation of the original images to a finer resolution. Since this time, several 
algorithms (operating in the spatial domain and in the frequency domain Debella-Gilo and 
Kääb, 2011, [Debella-Gilo and Kääb, 2011; Leprince et al., 2007) have been proposed to 
enhance precision, accuracy and robustness of the correlation and to define quantitative 
indicators of the uncertainty. The result of the correlation analysis, typically a full field 
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measurement of the displacement, contains a considerable amount of data compared with 
classical instrumentations and sensors (extensometers, fissurometers, inclinometers, GPS, 
strain gauges).  

So far, image correlation techniques have been applied only on aerial and satellite 
images (SPOT, QuickBird, OrbView, EROS) for the creation of landslide displacement maps 
[Casson et al., 2003; Delacourt et al., 2007; Leprince, 2008], whereas the use of image 
correlation on terrestrial images has not been as popular for permanent landslide monitoring 
as in other application field such as in solid and fluid mechanics or for the monitoring of ice 
glaciers [Fallourd et al., 2010] or volcanoes [Honda and Nagai, 2002].  

Because of the remarkable sensitivity of the technique, the same type of method can be 
applied over a wide range of scales, from high-resolution satellite imagery (typically 2.5 to 
5 m spatial resolution) to airborne and UAV very-high resolution imagery (from 0.5 to 2.5 m 
spatial resolution) and terrestrial ultra-high resolution images (less than 0.5 m spatial 
resolution). Recent works imply the development of sub-pixel displacement determination, 
the use of multi-modal images, and the introduction of feature semantics in the correlation. A 
major issue in applying image correlation for landslide analysis is to obtain sufficiently 
patterned images and very precise co-registration. When using image pairs acquired from the 
same position, only in-plane displacement can be retrieved, and one of the main challenges is 
therefore to use sequences of images from several angles of views in order to provide relevant 
information for the extraction of full three dimensional displacements (stereo-correlation). A 
second challenge lies in the inversion of mechanically significant properties from the 
displacement signal, such as the macro-scale rheology of the displaced material and the 
opening of cracks and fissures for brittle material. 

3.1.3. Innovative case studies 

The following section demonstrates the use of optical data via short summaries of four 
recently published or submitted research works carried out within SafeLand or through sister 
projects. 
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Random Forests and object-oriented analysis for landslide 
mapping from very high resolution imagery 

Application: Landslide inventory mapping 
Technique: Passive optical space- and airborne sensors 
Main references: Stumpf, A. & N. Kerle (2011): Object-oriented mapping of landslide using 
Random Forests  
Contributors: ITC (Stumpf, A., N. Kerle), CNRS (J. P. Malet) 

Abstract 

The increasing availability of very high resolution (VHR) remote-sensing images reveals new opportunities for 
the cartography of landslides in risk management and disaster response. Object-oriented image analysis has 
become one of the key-concepts to better exploit additional spatial, spectral and contextual information. The 
multitude of additional object attributes calls for the use of advanced data mining and machine learning tools to 
identify the most suitable features and handle the non-linear classification task. In this study we used the 
Random Forest algorithm for the selection of useful features and object classification in the context of landslide 
mapping. A workflow for image segmentation, feature extraction, feature selection and classification was 
developed and tested with multi-sensor optical imagery from four different test sites. Due to class imbalance and 
class overlap between landslide area and non-landslide areas the classifier can be heavily biased towards over 
and under prediction of the affected areas. This is a not uncommon issue for many real-world applications and a 
procedure to estimate a well-adjusted class ratio from the training samples was designed and tested. A number of 
potentially useful object metrics is evaluated and it is demonstrated that topographically guided texture measures 
provide significant enhancements. Employing 20 % of the image objects for training accuracies between 73.3 % 
and 87.1 % were achieved at four different test sites.  

Keywords: landslide mapping; VHR satellite images; image segmentation; object-oriented image analysis; 
Random Forest 

1. Introduction 

Comprehensive landslide inventories are the most commonly used source for quantitative 
landslide hazard and risk assessment at regional scales [van Westen et al., 2006]. Such 
inventories are also an important tool to address related concerns, such as to explore and 
quantify the role of landslides in the evolution and sediment budget of mountainous 
landscapes [Malamud et al., 2004]. Manual interpretation of aerial photographs and field 
work to date remains the most frequently followed approach for the elaboration of inventory 
maps in scientific studies and by administrative bodies. Despite its time-consuming and labor 
intensive nature, however, results still include a large degree of subjectivity and may vary 
considerably among different authors [Galli et al., 2008]. 
A number of recent events in China (2008), Italy (2009), Haiti (2010), and Brazil (2011) 
illustrate that the short-term availability of comprehensive VHR satellite images and strongly 
contrast the lack of reliable machine-aided mapping workflows. Proposed workflows for the 
analysis of optical data largely focused on the signals of individual pixel [Borghuis et al., 
2007; Nichol and Wong, 2005] or require the adjustment of hard coded thresholds for object 
classification [Barlow et al., 2006; Lu et al., in press; Martha et al., 2010a]. Based on 
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samples, image segmentation and the Random Forest (RF) [Breiman, 2001] algorithms this 
study elaborates and tests a workflow feature selection and classifier training for landslide 
mapping on images from variety of state-of-the-art optical sensors. 
 
2. Data and Methods 
 
The analysed VHR imagery comprised an aerial 
photograph, IKONOS, Quickbird and Geoeye-1 
of recently sites at France, China, Italy and Haiti, 
respectively (Figure 1). Furthermore topographic 
datasets were available from various sources and 
conformable resampled to a resolution of 10m. 
Reference data was available through landslide 
inventories elaborated from field work and the 
interpretation of various VHR remote-sensing 
datasets. 
Image segmentation was performed on all images 
within eCognition 8 on 15 different scales 
considering spectral information and at each scale 
96 object attributes including color, texture, shape 
and topographic derivates were calculated. To 
evaluate their importance for a correct 
classification all landslide objects and equal 
amount of non-landslide objects were sampled 
and the RF-based feature selection approach described in Diaz-Uriarte and Alvarez de Andres 
[2006] was applied. In order to evaluate the classifier performance and the effects of feature 
reduction 20% of the landslide objects and an equal number of non-landslide objects were 
randomly sampled from the entire populations to train RFs [Liaw, 2010], once with the full 
feature set and once with the selected subsets. 
In order to obtain a nearly balanced rate of commission and omission errors the training 
sample was again iteratively sub-divided. During various iterations the 20% of landslide 
objects were randomly sampled from the original training data. Starting with an initially 
balanced ratio βi of non-landslide and landslide objects the ratio was increased by 0.1 after 
each iteration (bootstrap re-sampling). The underlying assumption was that a class ratio that 
provides a balanced error rates on the resampled subsets (βn) of the original training samples 
would also serve to enhance the error balance for the entire population. The classifier 
performance was tested after each iteration on the remaining subsets of original training data 
and the ratio which provided the best balance was adopted to resample the entire training data. 
An overview of the complete workflow is also provided in Figure 2. 
 

Figure 1: Analyzed subsets at the different test 
sites. a) Haiti, b) Wenchuan, c) Messina, d) 
Barcelonnette area. White outlines indicate the 
landslide areas. 
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Figure 2: Overview of the processing steps followed in this study. A: The images were segmented at 15 different 
scale factors, and at each scale a number of object-metrics (mi) was calculated. B: Based on the landslide 
inventory all segments can either be assigned as landslides (OLS) or non-landslide objects (ONLS). C: A balanced 
subset (ǀO LSǀ =ǀO NLSǀ ) was repeatedly (N=5000) split into a training sample (trainn) and an out-of-bag test 
sample (OOBn). The OOBn sample was classified with the decision tree (treen) built from trainn. Sequentially, 
and one at a time, each object-metric mj used in treen was randomly permuted within the OOBn sample. The 
respective decrease of the classification accuracy was measured and the variable importance (VI) of each mj 
calculated as the average decrease from 5000 trees. D: 20% of the image objects (Tr20) and all selected object-
metrics mn were employed for the training of the RFs. D1: An iterative procedure was adopted to estimate the 
ratio of OLS and ONLS (βn) in the training sample that leads to balanced error rates. In the first iteration 20% of OLS 
and an equal number of ONLS (βi=1) were randomly sampled from Tr20 (trainsub) to train a RF. The remainder 
(testsub) was sent through the RF in order to asses user’s and producer’s accuracies. The next iteration started 
with βi+0.1 and the complete procedure was repeated until βi=7. βbal was determined as the βi that led to the 
smallest difference between user’s and producer’s accuracies. D: The estimated βbal was applied to the complete 
train set, which was subsequently used to train the final RF. Accuracies in terms of correctly classified areas and 
objects were finally assessed with the remaining 80% test set (Te80). 
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3. Results 

3.1. Feature selection 

Color, topographic variables and topographically 
guided versions of Haralick’s original texture 
measures [Haralick, 1973] were ranked with a 
high variable importance at all test sites and 
different segmentation scales. On average only 
about one third of the pre-selected metrics were 
detected as useful. The ranking of less important 
features and especially the overall number selected 
varies considerably among the different test sites 
and in dependency of the segmentation scale 
(Figure 3). Shape metrics provide generally very 
little additional information. At larger scales and 
segmentation scales shape indices provide some 
discriminant power but cannot compensate the loss 
of fidelity of that a coarser segmentation causes for 
other features.  
A RF classifier trained with 20% of all landslide 
objects and an equal number of non-landslide 
objects yielded higher accuracy in the 
classification of unseen image objects if a reduced 
feature space was adopted. This was observed for 
all test sites and a representative subset of tested 
segmentation scales. 

3.2. Estimate of optimal class-balance βn from the 
training samples 

For all cases we observed a strong over prediction 
of landslide areas if a class-balanced training 
sample (βi=1) was employed. Through random 
resampling of the original training data into further 
subsets training and test sets (20/80) with altering 
class distribution were created. Iteratively 
increasing the ration on non-landslide objects in 
the training sample, it was possible to monitor the effects of the changing class distribution on 
user’s and producer’s accuracies for the test set (Figure 4). The estimated class ratios (βn) 
were then applied for the entire training set (20% of all data per site) and the overall 
performance of the classification was assessed on the remaining test data (80% of the data). 

Figure 3: Feature selection history at the four 
test sites with the smallest segmentation scale. 
The out-of-bag (OOB) error is an error estimate 
intrinsic to the Random Forest approach [see 
Breiman, 2001]. The black dot indicates the 
variable combination with the smallest OOB 
error. The brown dot highlights the highest 
ranked texture measure with the respective 
rank. Boxplots indicate the variability of the 
number of selected features among all 15 
segmentation scales. 
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As the estimated βn were in all cases below the natural class imbalance not all non-landslide 
objects initially subsampled for training could be used in the training set at once. However, 
they can be adopted to create several (here 50) βn –adjusted training sets with slightly different 
characteristics which yields a further estimate of the accuracy variability. Although, βn - 
estimates did not solve the problem entirely they provided a significantly better balance 
between user’s and producer’s accuracies than could be achieved with the natural class 
distribution or an ad hoc balanced training sample. The induced variance of non-landslide 
objects in the training sample demonstrated very little influence on the stability of the 
achieved accuracy. 

  

Figure 4: Estimates of the class balance (βn) that lead to a balance of the mean user’s (dashed black line) and 
mean producer’s accuracies (full black line) from iterative resampling of the training data. The means of the 
accuracies for each β were calculated from 10-fold bootstrap replicate runs (n=10). The grey margins show the 
corresponding standard deviations. For learning curves with high variance additionally figures from 250 
bootstrap replicate runs (n=250) are presented. 
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Figure 5: Results with a segmentation scale of 10, after feature selection and balancing of the error rates as 
indicated in Table 4 at a, Haiti b, Wenchuan c, Messina and d, Barcelonnette. Correctly classified areas include 
the samples used for training. 

4. Results and Discussion 

Among several factors that influence the correct recognition of affected areas feature selection 
as well as class-imbalance and –overlap were analyzed in this study. RF-based feature 
reduction enhanced the classifier performance in terms of accuracy and speed. Additional 
features resulting from image segmentation such as texture and auxiliary topographic data are 
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capable to considerably reduce confusion. Classifier performance may be benchmarked with a 
desired predefined producer’s accuracy [Brenning, 2009], whereas balanced error rates we 
considered as rather desirable for landslide inventory mapping because over- or under-
prediction would lead to systematic over- and under-estimation of the hazard. A procedure to 
adjust the class balance in the training sample was designed and helped to enhance to improve 
the balance of user’s and producer’s accuracy significantly. In summary, the RF classifier 
provided relatively high accuracies of up to 87% for the test sites Haiti and Wenchuan, while 
in the case of Messina the best model reached an accuracy of 73% (Figure ) Those figures are 
in a similar range as the results of other recent studies on landslide mapping from optical 
imagery [Barlow et al., 2006; Lu et al., in press; Martha et al., 2010a]. 

Table 1: Accuracy assessment for all test sites at three exemplary segmentation scales. RFs (ntrees = 500), 
trained with 20% of the landslide objects (OLS) and βn -fold amount of non-landslide objects (ONLS) were 
tested. The mean accuracies and their standard deviations were derived from 50 replicate runs. The best result for 
each test site is indicated with bold numbers. 

 

Though the quantities of employed samples are not always explicitly mentioned [Barlow et 
al., 2006; Borghuis et al., 2007; Nichol and Wong, 2005], most proposed solutions depend on 
the availability of some sort of training area to adjust the method. Once the samples are 
provided, the framework presented in this paper has the potential to run fully automated with 
different image types, and liberates the user from the selection of appropriate features and 
thresholds. 
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It can be observed that larger segmentation scales, yielding to larger objects with higher intra-
object variance, are accompanied by a loss of accuracy. For the cases Messina and Wenchuan 
this has to be attributed to an increasing mismatch between the boundaries of the image 
objects and the reference objects (expressed by decreasing Farea in Table 1). For the test sites 
Messina and Barcelonnette large segmentation scales also decreases the classifier 
performance (expressed by decreasing Fobject in Table 1).  
Though, the particular performance of the presented supervised framework will vary for 
different ground conditions and input datasets, the robust performance of the workflow in the 
tested cases raises confidence in its utility of landslide mappings on regional scale. Further 
observations (not presented here) indicate that importance of different features varies in 
dependency of the segmentation scale and hence further improvements might possible 
considering evidence hierarchically among different scales. However, to the best of our 
knowledge a clear conceptual framework for such a multi-scale classification is still missing. 
More research is needed to test available machine learning tools on further datasets (multi-
temporal datasets), on regional scale and under the consideration of user interaction. 
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Digital correlation of optical images for landslide monitoring and 
detection on regional scale 

Application: Landslide mapping and monitoring 
Technique: Muli-modal optical images 
Main references: Delacourt, C., P. Allemand, E. Berthier, D. Raucoules, B. Casson, 
P. Grandjean, C. Pambrun, and E. Varel (2007): Remote-sensing techniques for analysing 
landslide kinematics: a review  
Contributors: ITC (A. Stumpf), BRGM (D. Raucoules, M. de Michele, C. Delacourt) 

Abstract 

Digital image correlation has become an important technique for the detection and monitoring of surface 
displacements. The short text provides an overview of currently available techniques and recent studies that 
applied DIC on optical images for landslide monitoring. 

Keywords: DIC, detection and monitoring of surface displacement 

During the last decade DIC has been tested and validated for the monitoring of glacier flows, 
the measurement of coseismic slip, volcanic ground deformation, dune migration and 
landslide surface displacement. A number of improvements have been achieved through 
enhanced algorithms for correlation and interpolation and determination the location of 
corresponding points in two images with sub-pixel precision. The theoretical precision of the 
measurement can therefore reach between 1/16 [Debella-Gilo and Kääb, 2011] or 1/20 of a 
pixel [Leprince et al., 2007a]. The actual accuracy of the measurements however depends on 
several factors such as the spatial and temporal resolution of the available imagery, the 
magnitude and coherency of the displacement, the accuracy of the underlying DEM, and not 
at least the proper co-registration of the multi-temporal images (Table 2). 
On regional scale DIC has been applied in a multitude of studies to measure coseismic slip 
and deformation which is typically coherent over larger areas [Leprince et al., 2007a]. 
Although, such regional measurements in some cases revealed slope failures as a signal de-
correlation (Fig. 1) the method targets rather the detection and measurement of the 
displacement of slow moving landslide. 
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Table 2: Overview of options for the measurement of ground displacement from optical sensors [modified after 
Delacourt et al., 2007] 

 Optical sensor  

 Satellite  Aerial  Remote-controlled  Fixed 
Camera  

Measurement 
Type  2 D horizontal displacement or 3D if DEMs available  

Spatial 
Resolution  

0.6 m to 80 m  0.5 m to 2 m  < mm to 1 m  ~ cm to ~ m  
Accuracy  ~1/5 to 1 pixel  ~ 1 - 3 pixels  A few pixels  1/5 pixel  

Swath  10 x 10 km to 60 x 60 km  5 x 5km  10 x 10 m to 300 x 300 
m  

10 x 10 m to 
1 x 1 km  

Temporal 
resolution  

~30 days and less > 5 years On request  1 s to 1 day  

Archive  

SPOT1-4 (1986); IRS-1C, 1D, etc. 
(1995) SPOT5 (2002); IKONOS 

(1999); QUICKBIRD (1999); ALOS 
(2006), etc.  

since 1950s recently – locally a 
few years 

recently - 
locally a few 

years 

Major 
references  

[Berthier et al., 2006; Berthier et al., 
2005; Gonzalez et al., 2010; Kääb, 

2002; 2005; Leprince, 2008; Scambos 
et al., 1992; Scherler et al., 2008; 

Tseng et al., 2009] 

[Ayoub et al., 2009; Casson et al., 
2003; Debella-Gilo and Kääb, 2011; 

Delacourt et al., 2004; Delacourt et al., 
2009; Kääb, 2002; Michele and Briole, 

2007]  

??? 

[Arattano 
and Marchi, 
2000]Travell

etti et al. 
2011 (this 
document) 

 

 

Figure 1: Left: Decorrelation signal (black circle) in the northward component of the coseismic offset field from 
the 2005 Kashmir earthquake derived from ASTER images. Right: Before and after images showing the area 
where the landslide occurred [modified after Leprince, 2008] 
 



D4.3 Final version 
Creation and updating of landslide inventory maps, landslide deformation maps                      Date:    2011-09-05 
and hazard maps as input for QRA using remote-sensing technology 
 

 
 
Grant Agreement No.: 226479 Page 39 of 302 
SafeLand - FP7 

Although, relatively user friendly software to perform DIC with aerial and spaceborne images 
became available [Leprince et al., 2007b], there are still rather few studies that applied the 
method to measure the surface displacement of landslides from airborne or satellite images 
[Casson et al., 2005; Debella-Gilo and Kääb, 2011; Delacourt et al., 2009; Kääb, 2002; 
Tseng et al., 2009; Yamaguchi et al., 2003] most of them working with individually 
developed algorithmic implementations. As indicated in Table 2 there are several potentially 
sources for recent imagery and in most areas such investigation could in principal benefit 
from large image archives available. In many cases this potentially enables the analysis of the 
displacement history over several decades and may provide important information to 
understand the failure mechanism and hence associated hazards and risk. Probably one of the 
most detailed investigations in this direction has been undertaken by Casson et al. [2005] who 
measured the average surface displacement of the La Clapière landslide from aerial 
photographs over time period of more than two decades. In combination with mutitemporal 
DEM it was further possible to reconstruct changes in the geometry and velocity of the slip 
with time.  

Figure 2: Comparison of remote-sensing derived displacement vectors with ground measurements at the La 
Clapière landslide [Casson et al., 2005] 

The only currently available example for the application of DIC in landslide detection and 
monitoring on a regional scale was presented by Delacourt et al., [2007] for the Barcelonnette 
area in southern France (2). It demonstrates that the method is not only applicable for the 
detailed monitoring of individual sites but may also provide additional information on the 
landslide activity for the creation and updating of landslide inventories on regional scale. 
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Figure 3: Example for the application of DIC for the detection and measurement of landslide-induced 
displacement at regional scale a) “La Valette” mudslide, b) “La Clapière” landslide (difficult to discriminate), c) 
“Poche” mudslide and d) “Super Sauze” mudslide [Delacourt et al., 2007]. 

As noted above only two recent studies provide some comparison of different DIC 
implementations [Debella-Gilo and Kääb, 2011; Haug et al., 2010] and a comprehensive 
benchmarking and transparent presentation of available algorithms would facilitate the choice 
of the optimal methods. As the measurable displacement is directly a function of the pixel size 
of the input image more efforts are still needed to test the techniques on recently launched 
VHR spaceborne sensors (WorldView, Geoeye). Such sensors generally also provide 
multispectral information which might be useful to identify and filter out surface types that 
are known to introduce mismatches in DIC results (homogenous textured forests). New X-
band radar satellites now also deliver images with resolution suitable for DIC and 
corresponding techniques are summarized in section 3.3.2 C.  
Delacourt et al. [2007] emphasized the potential of fixed cameras and UAVs for acquiring 
imagery with any desired temporal frequency. A comprehensive literature review revealed no 
example where multitemporal UAV-acquired imagery has been used for a correlation-based 
measurement of displacement. The possibility to visually track landslide surface features from 
multitemporal UAV images has been confirmed by Niethammer et al., [forthcoming] whereas 
the applicability of DIC on the fully co-registered images still needs to further elaboration. On 
the other hand, a study on DIC from terrestrial fixed cameras carried out by Travelletti et al. 
[2010] at the SafeLand test site Super Sauze yielded accurate and detailed maps of the 
landslides surface motion (this section). 
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monitoring 

Application: Landslide monitoring 
Technique: Passive optical ground-based sensors 
Main references: Travelletti, J., C. Delacourt, P. Allemand, J.-P. Malet, J. Schmittbuhl, R. 
Toussaint, M. Bastard (in press, IJPRS): Correlation of multi-temporal ground-based images 
for landslide monitoring: application, potential and limitations. 
Contributors: CNRS (J. Travelletti,  J.-P. Malet, J. Schmittbuhl,  R.Toussaint) 

Abstract 

The objective of this work is to present a low-cost methodology to monitor the displacement of continuously 
active landslides from ground-based optical images analyzed with a normalized Image Correlation technique. 
The performance of the method is evaluated on a series of images acquired on the Super-Sauze landslide (South 
French Alps) over the period 2008-2009. The image monitoring system consists in a high resolution optical 
camera installed on a concrete pillar located on a stable crest in front of the landslide and controlled by a 
datalogger. The data are processed with a cross-correlation algorithm applied on the full resolution images in the 
acquisition geometry. Then, the calculated 2D displacement field is ortho-rectified with a back projection 
technique using a high resolution DEM interpolated from Airborne Laser Scanning (ALS) data. The 
heterogeneous displacement field of the landslide is thus characterized in time and space. The performance of the 
technique is assessed using as reference differential GPS surveys of a series of benchmarks. The sources of error 
affecting the results are then discussed. The strongest limitations for the application of the technique are related 
to the meteorological, illumination and ground surface conditions inducing partial or complete loss of coherence 
among the images. Small changes in the camera orientation and the use of a mono-temporal DEM are the most 
important factors affecting the accuracy of the ortho-rectification of the displacement field. Because the 
proposed methodology can be routinely and automatically applied, it offers promising perspectives for 
operational applications like, for instance, in early warning systems.  

Keywords: image cross-correlation, image matching, landslide, time-lapse photography, displacement 
monitoring 

1. Introduction 
 

In the last decades, the development of ground-based platforms for landslide monitoring at the 
local scale provided many advantages over spaceborne and airborne platforms despite a 
shorter spatial coverage [Corsini et al., 2006]. The geometry and frequency of acquisitions are 
more flexible and adaptable to any type of local environment. Furthermore, the installation of 
the monitoring system is generally relatively easy. In addition ground-based platforms are 
permanent installations that allow a continuous monitoring [Casagli et al., 2004; Delacourt et 
al., 2007].  
Three main categories of ground-based remote-sensing techniques are used in landslide 
monitoring: Ground-Based Synthetic Aperture Radar Interferometry (GB-InSAR), Terrestrial 
Laser Scanning (TLS) and Terrestrial Optical Photogrammetry (TOP). Here only a state-of-
the art of the application of TOP to landslide is given; detailed reviews of the application of 
GB-InSAR and TLS to landslides can be found in Tarchi et al. [2003], Jaboyedoff et al. 
(2010), and Monserrat & Crosetto [2008].  
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TOP is a very cost-effective technique with implementation, operating and equipment costs 
much lower than GB-InSAR and TLS. The technique consists in acquiring digital optical 
images represented using a matrix of intensity values (brightness) recorded at each pixel of 
the Charge Coupled Device (CCD) of the camera. While aerial images are acquired on 
overhead photographs from an aircraft, TOP uses RGB images acquired from a spot very 
close to the ground [Jiang et al., 2008]. In the last decades, camera self-calibration and 
analytical processing techniques allow the use of non-metric cameras and of simplified 
camera calibration algorithms to compute digital elevation models using the principle of 
stereoscopic views [Mikhail et al., 2001; Jiang et al., 2008]. In the current state, the 
application of terrestrial images for landslide monitoring is mostly related to the production of 
DEMs for image ortho-rectification and sediment budget analysis [Pesci et al., 2004; 
Cardenal et al., 2008], and more recently to the characterization of the slope morpho-
structure [Lim et al., 2005; Sturzenegger & Stead, 2009].  
Using correlation techniques, two-dimensional displacement fields can be derived by tracking 
objects in two images acquired at different time. So far, image correlation techniques have 
been applied only on aerial and satellite images (SPOT, QuickBird, OrbView, EROS) for the 
creation of landslide displacement maps [Casson et al., 2003; Delacourt et al., 2004; 
LePrince et al., 2008]; the use of image correlation on terrestrial images has not been as 
popular for permanent landslide monitoring as in other application field such as in solid and 
fluid mechanics for the characterization of the deformation pattern of soil/rock samples 
[White et al., 2003; Chambon et Schmittbuhl, 2003; Küntz et al., 2005] or for the monitoring 
of other natural processes such as ice glaciers [Corripio et al., 2004; Fallourd et al., 2010; 
Maas et al., 2008] or volcanoes [Honda & Nagai, 2002]. Only Delacourt et al. [2007] 
demonstrated an efficient application of TOP for landslide monitoring which consisted in the 
determination of the landslide boundaries and in the qualitative estimation of the spatial 
variability of displacement at the La Clapière landslide (French Alps) with an image 
acquisition system installed at 1 km-distance. 
Generally, the 2D displacements (in pixel) evaluated by the correlation algorithm have an 
accuracy of about 0.2 pixel [Casson et al., 2005; Delacourt et al., 2007] in the image plane, 
corresponding to an accuracy of millimeters to several centimeters for distances of about 
100 m in the local coordinate system [Kraus & Waldhäusl, 1994].  
The major sources of errors affecting the displacement calculations and thus potentially 
limiting the efficiency of TOP for an operational landslide monitoring can be classified in two 
groups: (i) the parameters affecting the Image Correlation computation and (ii) the external 
parameters influencing the ortho-rectification procedure. The objective of this work is 
therefore to evaluate the potential and the limitations of TOP for the permanent monitoring of 
landslide using Digital Image Correlation (DIC) techniques.  
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Figure 1: View of the Super-Sauze landslide towards the south with the different coordinate systems used in the 
georeferencing procedure and location of the camera monitoring system. 
 

2. Data and Methods 

The steps in the data processing workflow consist in (1) correlating the images by pairs in 
their original acquisition geometry to prevent any loss of information, and (2) ortho-rectifying 
the calculated displacement fields using a high-resolution digital elevation model interpolated 
from airborne LiDAR data. The daily images presenting the best ground texture contrast and 
the most homogeneous lightening are selected based on expert judgment.  
The development of the method has been carried out on images acquired at the toe of the 
Super-Sauze mudslide (South French Alps; Malet, 2003) for the period 2008-2009 by a 
remote camera monitoring system. This instrumentation consists in a low-cost D70 Nikon 
non-metric reflex digital camera installed on a concrete pillar located on a stable crest in front 
of the landslide at a distance of 300 m from the lower part and 900 m from the main scarp 
(Fig. 1). The acquisition system is controlled by a datalogger (Campbell CR10) and the power 
is provided by a 40 W solar panel. The characteristics of the acquisition are presented in Table 
2. Each four days, four images are acquired at 11:00, 12:00, 13:00 and 14:00 GMT in order to 
increase the probability of having at least one image with good meteorological conditions. 
Each photograph (6 Mb) is stored in a native file format to avoid any loss of information. As 
reference measurements, landslide displacements are also currently monitored by Differential 
Global Positioning System (DGPS) and Terrestrial Laser Scanning (TLS).  
The 2D displacement field is obtained by correlating two optical images acquired at different 
time. The image correlation technique is based on the automatic identification of identical 
texture patterns within an image by maximizing a correlation function [Lewis, 1995; Baratoux 
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et al., 2001; Debella-Gilo & Kääb, 2010]. Its principle adapted for landslide kinematics 
analysis is described in Delacourt et al. [2007]. Visible ground features have to be 
superimposed on two successive images on stable parts located outside the landslide. On the 
areas affected by landslide movements, the visible and recognizable features are shifted by the 
displacements. In order to quantify the ground displacements, a correlation window is defined 
on a reference (often the oldest) image. The corresponding window is searched in a pre-
defined explored area belonging to the second image. The starting point of this explored area 
is the expected position of the window as if no displacement occurred between two 
acquisitions. The process is repeated for each pixel of the reference image. The Euclidean 
distance between the reference point and the matching point represents the displacement 
magnitudes in the image plane. By modifying the zone of interest, it is then possible to 
determine the displacements at various positions within the images (Fig. 2). It is important to 
note that the normalized cross-correlation technique cannot track objects that start to rotate 
significantly or are affected by important perspective distortions [Lewis, 1995]. 
A sub-pixel hierarchical correlation technique is used [Chambon, 2003]. The RGB images are 
first converted in gray-scale images on which a 3x3 pixel Sobel convolution matrix is applied 
to highlight the ground surface texture. The gradient values are then correlated [Chambon, 
2003]. Four successive degradations of the image resolution are applied following a 
pyramidal approach for changing the physical size of the correlation window and of the 
explored area by down-sampling the gradient values of the full resolution image [D’Antone, 
1995; Kumar & Banerjee, 1998; Fig. 2]. The optimum sizes of the correlation window (16x16 
pixels) and of the explored area (32x32 pixels) were identified with a trial and error 
procedure. These parameters are constant during the correlation computation. The correlation 
starts with the lowest resolution image in order to determine the largest displacements. Then 
the location of the pixel with the maximum cross-correlation value is used as the centre of the 
zone of interest for the next correlation step at a higher resolution. The spatial location of the 
maximum correlation value in the highest resolution image is thus progressively better 
estimated (Fig. 4). Ignoring high resolution information at the first computational step 
decreases the probability to reach a local minima of the correlation function and, 
consequently, to obtain wrong matches in the correspondence solutions [Aloui & Ibn-Elhaj, 
2009]. In addition, this approach ensures a higher probability of reliable correlation peak 
detection [Anandan et al., 1993]. The sub-pixel displacement is computed after the correlation 
at the highest resolution image. An iterative procedure is used to find the maxima of the 
correlation function interpolated with a bi-parabolic formula and with a maximization 
procedure based on the simplex method [Chambon, 2003]. 
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Figure 2: Principle of the normalized hierarchical image correlation. The correlation computation starts from the 
lowest resolution to the highest resolution by keeping constant the size of the correlation window and the 
explored area, while their physical size is decreasing. At each higher resolution level, the explored area is 
centered on the pixel with the highest t correlation value of the previous resolution level. The estimate of the 
position of the maximum correlation value is thus increased. 
 
The correlation results consist in matrices of displacements ∆u and ∆v along the u- and v-axes 
in the image plane with their associated correlation index (Fig. 4). Because the pixel size is 
not constant in the image due to the oblique acquisition, the displacements field correlated in 
the image plane cannot be directly interpreted in terms of metric displacements. Therefore an 
ortho-rectification procedure is necessary for a quantitative analysis of the displacement 
fields. 
 
3. Results 

3.1. Displacement maps of the landslide 

A set of images over the period May–July 2008 is used to illustrate the potential of the 
technique for the characterization of the kinematics during an acceleration period triggered by 
high rainfall amounts and a fast melting of the snow cover.  
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Figure 3: Displacement rates amplitude (color) and displacement direction (arrows) in the image plane and 
cumulated displacements along 8 profiles crossing the landslide over the period the 20th May to the 25th June 
2008. In order to highlight the displacement direction, the arrow length is normalized in each image. 
 
Figure 3 shows an example of displacement rate (in pixel.day-1) of the ground surface in the 
image plane derived from image pairs of 20–28 May, 1–4 June and 9 June–13 June. The 
reference is the image of 20 May. The contrast in displacement rates between the landslide 
area and the stable area gives confidence on the calculated velocity field. One can notice that 
the pattern of displacement rate is heterogeneous spatially and temporarily. The upper part of 
the landslide displays the highest velocities ranging from 1 to 7 pixels.day-1 while the lower 
part displays velocities of less than 4 pixels.day-1. No quantitative comparisons can be carried 
out at this stage because the pixel sizes vary strongly in the image. From the 20 May to the 13 
June, cumulated displacements up to 110 pixels are observed in the upper part. The maximum 
of displacement rate is observed around the 1st June. Then the landslide decelerates to 
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displacement rate of about 1 pixel.day-1. 
 

 
 
Figure 4: Displacement rates map for the period 1st – 4th June 2008. (A) Displacement rates observed on the 
whole landslide. The profiles P1, P2 and P3 refer to Fig. 5 and the locations pt1, pt 2 and pt 3 refer to Fig. 6. (B) 
Details on the displacement rates and displacement direction of the velocity amplitude and direction in the upper 
part. (C) Details on the displacement rates and displacement direction in the lower part. 
 
Some local specific displacement patterns are also clearly highlighted; for instance, the 
presence of a stable in-situ crest located in the landslide body is perfectly identified in the 
correlated images. 
Figure 4 presents the amplitude of the 3D ortho-rectified displacement rates for the period 1st 
June– 4th June in the local coordinate system. The difference of kinematics among the upper 
(until 3 m.day-1) and the lower (until 1 m.day-1) parts becomes more evident than in the image 
plane. The geometrical effect induced by the presence of the stable in-situ crest on the 
landslide kinematics is also clearly pointed out. The temporal evolution of the displacement 
rates is illustrated with two transversal and one longitudinal profiles on Figures 5 and 6. The 
difference of displacement rates between the upper and the lower part of the landslide is 
particularly pointed out.  
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Figure 5: Displacement rates profiles in the upper (P1), the medium (P2) and the lower (P3) part of the landslide. 
The location of the profiles is indicated in Fig. 4. 
 
The precision of the computed displacements is assessed by performing a null hypothesis on 
the stable areas [Berthier et al., 2005; Casson et al., 2003]. Only the points with a correlation 
coefficient r>0.8 are taken into account. In the image plane coordinate system, the average 
errors µ range from 0.5 to 0.9 pixel with standard deviations σ of 0.3 to 1.2 pixel for the 
image pairs between the 20 May and the 25 June. In the local coordinate system, the average 
errors µ range from 0.03 m to 0.11 m with standard deviations σ of 0.10 to 0.31 m for the 
image pairs between the 20 May and the 25 June. 
 

3.2. Comparisons with dGPS displacement measurements 

In order to estimate the accuracy and validate the calculated displacements, comparisons with 
independent and more accurate geodetic technique is necessary. Sixty benchmarks distributed 
in the stable parts and on the landslide body were monitored by DGPS with a horizontal and a 
vertical average accuracy of ±0.02 m and ±0.05 m. In total, 219 DGPS measurements are 
available for the period 2008–2009. In order to validate the displacements computed in the 
image plane, the DGPS benchmarks are projected in the image plane using the collinearity 
equations [Bonneval 1972, Kraus & Waldhaüsel, 1998]. The pixel displacements derived 
from the image correlation are then averaged in a perimeter of 16 pixels around each 
benchmark. The results are presented in Figure 6A. A correlation coefficient of r=0.98 is 
found between DGPS measurements and Image Correlation, and an average relative accuracy 
of 11% is determined (Fig 6C). In order to validate the metric displacements in the local 
coordinate system, the ortho-rectified displacements are averaged in an area of 4 m2 around 
each benchmark and compared with the DGPS displacements. A correlation coefficient of 
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r=0.95 is found (Fig. 11B), and an average relative accuracy of 20% is determined (Fig. 6D). 
 

 
 
Figure 6: Assessment of the accuracy of the Image Correlation technique. Relationships between the 
displacements observed by Image Correlation and the displacements observed by DGPS on sixty benchmarks in 
the image plane (A) and in the local coordinate system (B). Relative accuracy of the Image. Correlation 
technique in the images plane (C) and in the local coordinate system (D). 
 

4. Discussion and Conclusion 

The potential of multi-temporal correlation of ground-based images for landslide monitoring 
has been assessed using the dataset available on the Super-Sauze landslide (South French 
Alps). A methodology to compute displacement rates both in the image plane coordinate 
system and in the local coordinate system has been proposed.  
The results demonstrated clearly the potential and the limitation of this technique by 
identifying the heterogeneous displacement field, in space and in time, of the landslide. The 
camera monitoring allowed to characterize displacements up to 3 m.day-1 during an 
acceleration period, and displacement of about 0.02 m.day-1 computed over the period July to 
September (the less active period). The results are in good agreement with previous 
knowledge on the landslide kinematics and are in very good agreement with benchmark 
displacements measured by DGPS.  
For objects located in a range of 300 to 900 m from the camera location, this study showed 
that the pixel size can vary from 0.005 to 0.04 m2 according to the resolution of the image 
(2000x3008 pixels) and the angle of incidence of the line of sight. The orientation of the line 
of sight (depending on the location and orientation of the camera) to the ground surface has to 
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be considered before installing a permanent monitoring system. Areas of low incidence angles 
(< 5°) are very sensitive to small movements of the camera. Therefore, the angle should be the 
most perpendicular as possible to the mean displacement vector of the landslide. 3D 
displacements of less than 0.04 m and 0.06 m in the lower part of the landslide and 0.09 m 
and 0.11 m in the u and v-directions are difficult to measure over a period of four days 
without a sub-pixel correlation algorithm.  
The strongest limitations are independent of the acquisition system and are related to the 
meteorological and illumination conditions (Fig. 7) and the ground surface changes inducing 
partial or complete loss of coherence between pairs of images. During the winter season (from 
November to May), the presence of snow impedes reliable correlation results and excessive 
ground deformations between two consecutive years impede valid displacement 
measurements even if the images are acquired during the same solar time. The small changes 
in the camera orientation and the use of a constant DEM are the most important parameters 
that affect the accuracy of the ortho-rectification of the displacement field. A regular 
acquisition of multi-temporal DEMs through airborne or terrestrial laser scanning or 
stereoscopic photogrammetric views is believed to be a priority to significantly improve the 
accuracy of the technique. The errors induced by the sub-pixel correlation algorithm are thus 
insignificant compared to the influences of the other parameters cited previously.  
 

 
 
Figure 7: Results of the correlation on the synthetic shaded relief images. (A) Influence of illumination 
conditions as a function of the sun elevation and azimuth on the mean correlation coefficient. (B) Relationship 
between displacement noise index and correlation coefficient. The values near the dots correspond to the sun 
elevation angles. 
 
The results demonstrate that Image Correlation techniques implemented in permanent 
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monitoring system is particularly interesting for monitoring landslides characterized by 
annual pluri-decimetric displacements. In addition, this low cost technique is a very suitable 
alternative for inaccessible landslides or areas without access to power supply. Furthermore, 
because the proposed methodology does not require GCPs except for determining the external 
orientation of the camera and for combining displacement pattern observed in image pairs 
acquired over two years, the methodology can be routinely and automatically applied to new 
pairs of images. Therefore this study offers very promising perspectives for operational 
applications which can be potentially integrated in an early warning system by considering 
additional efforts in direct data transmission. Finally, inversion of the displacement field 
could be developed to characterize the macroscopic rheological properties of the landslide 
material. 
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Object-oriented analysis of unmanned aerial vehicle (UAV) 
imagery for mapping and monitoring of landslide surface features 

Application: Landslide characterization and monitoring 
Technique: Passive optical airborne sensors 
Main references: Stumpf, A., U. Niethhammer, S. Rothmund, A. Mathieu, J.-P. Malet, N. 
Kerle, M. Joswig (2011): Object-oriented analysis of unmanned aerial vehicle (UAV) 
imagery for mapping and monitoring of landslide surface features 
Contributors: ITC (A. Stumpf, N. Kerle), CNRS (J.P. Malet, A. Mathieu) 

Abstract 

The surface features of active landslides reveal important insights into the pattern of deformation and influence 
hydrological processes that determine the behavior of the landslide. Especially, tension cracks and fissures may 
modify the pore-water response considerably and their integration into hydrological models can yield more 
reliable kinematic forecasts and estimates of the hazard level. Systematic mappings of the distribution and 
evolution of fissures and cracks have been difficult in the past, whereas the recent wide-spread of low-cost 
Unmanned Aerial Vehicles (UAVs) provides an efficient solution to acquire imagery with sufficient spatial and 
temporal resolution. 
This study focuses on the adaption and application of advanced object-oriented image analysis techniques to 
UAV imagery with ground resolutions of 5-10 cm and thereby targets an efficient semi-automatic mapping and 
characterization of geomorphological features. 
Multi-temporal VHR optical images of the Super Sauze landslide (South French Alps) were acquired with an 
UAV for the period 2008-2010 and reveal the pattern and development of geo-indicators of landslide activity. 
Especially, surficial fissures are expressions of the distribution of stress and strain within the landslide and 
proxies for analyzing the kinematics and rheology of the material.  
The highly textured landslide surface (composed of blocks of different sizes, of small gullies and open channels, 
and of lobes) creates a challenging domain for the application of automated fissure detection. Based on 
algorithms for edge detection, morphological filtering, texture analysis, image segmentation and shape analysis, 
an image processing chain that enables the semi-automated mapping of surface fissures is proposed. Knowledge 
on the geomorphological processes is incorporated in the workflow to efficiently distinguish the different 
structures. 
The processing chain results in multi-temporal maps for the abundance and density of fissures, The high image 
resolution also allows mapping the vegetation patterns and characterizing the relative distribution of gravel sizes 
at the surface via windowed measurements of the grey values entropy. In general the semi-automatic analysis of 
the UAV imagery provides a cost-efficient, objective and transparent way for the monitoring of hazardous sites 
and geomorphological features in general. 

Keywords: image cross-correlation, image matching, landslide, time-lapse photography, displacement 
monitoring 

1. Introduction 
 

The observation of surface characteristics of slopes and rockwalls is an important approach to 
gather information about their internal states. Surface features in general reveal important 
information about the past and present patterns of deformation and displacement and their 
observation and interpretation can contribute to a better understanding of the underlying 
processes and related hazards [Fleming and Johnson, 1989; McCalpin, 1984; Parise, 2003]. 
More specifically detailed mapping and analysis of structural discontinuities is a powerful 
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tool to identify and characterize of potentially unstable areas [Günther et al., 2004; Hoek and 
Bray, 1981; Jaboyedoff et al., 2004; Matheson, 1983; Priest, 1993; Selby, 1993] and surface 
fissures may serve as a geo-indicator for initial failure states [Abramson et al., 2001; 
Chowdhury and Zhang, 1991 ; Petley et al., 2006].  
The surface characteristics also modify hydrological processes such as infiltration and 
drainage patterns, which in turn influence the ground-water system and the kinematic 
response of the landslide to hydrological events [Malet et al., 2003; Malet et al., 2005; van 
Asch et al., 2009]. Especially, tension cracks and fissures may modify the infiltration and 
pore-water response considerably and their integration into physically-based models may 
yield more reliable kinematic forecasts and estimates of the hazard level [Baum and Fleming, 
1991; Corominas et al., 2002; Iverson, 2000; Lindenmaier et al., 2005; Malet et al., 2005; van 
Beek and van Asch, 1999]. 
Mappings at the detail of surface fissures and other, similar scaled surface characteristics 
require extensive field surveys [comp. Fleming et al., 1999; Meisina, 2006] which quickly 
become unfeasible for the systematic and repeated production of maps over larger area.  
The recent wide-spread availability of VHR images especially from low-cost Unmanned 
Aerial Vehicles (UAVs) now provides an efficient solution to acquire imagery of landslides 
with spatial and temporal resolution that may allow detailed monitoring of surface features 
[Niethammer et al., in press]. Airborne images from UAVs and such with comparable 
resolutions have been used in numerous geoscientific studies such as the monitoring of 
vegetation dynamics or crops [Berni et al., 2009; Dunford et al., 2009; Hardin and Jackson, 
2005; Laliberte and Rango, 2009; Lucieer et al., 2010], and geomorphological and soil 
surface processes [Carbonneau, 2010; Carbonneau et al., 2006; Corbane et al., 2008; 
Graham et al., 2010; Marzolff and Ries, 2007; Puech et al., 2009; Raclot, 2006], wheras their 
potential use for the for the monitoring of landslides still needs to be further explored. 
This study focuses on the adaption and application of advanced object-oriented image 
analysis techniques to analyses UAV imagery with ground resolutions of 5-10 cm and thereby 
targets a semi-automatic mapping of surface fissures and other geomorphological relevant 
features. 
 
2. Data and Methods 

 
Niethammer et al., [2009] used a low-cost quad-copter UAV to acquire images of the Super 
Sauze mudslide at several dates (Fig. 1). It has been demonstrated that the acquired images 
allow the photogrammetric generation of topographic models, and also relationships between 
observable fissure structures and mechanical processes have been previously discussed by 
Niethammer et al. [in press]. The same authors carried out a visual interpretation of images 
acquired in October 2008 to map surface fissures at four different locations of the landslide 
and suggested that multi-temporal maps of the fissures would provide valuable input for the 
understanding of the landslide dynamics. However, the manual mapping of the numerous 
structures for an entire landslide and/ or multiple time-steps is a tedious work. To make the 
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mapping more efficient and explore potential relationships between the image features and 
geomorphological processes we used the eCognition software environment to design an 
automated mapping workflow. 
 

  
Figure 1: Location of the Super Sauze mudslide and detailed fissure patterns that can be observed in the acquired 
images. 
 
2.1. Fissure mapping workflow 
 
An overview of the mapping workflow is provided in Figure 3. The starting point is the 
extraction of linear elements based on the grey- value gradients within the image. The 
adopted line extraction tool [Trimble, 2011] is a steerable canny-like [Canny, 1986] edge 
detector including several parameters that can be tuned towards the linear elements of interest. 
Among other parameters the user can define the length, width and border width of the features 
of interest, their angle of orientation and the maximum similarity of the line to the border, 
which defines the sensitivity to changes in grey values (Figure 2a). As illustrated in Figure 2b 
the definition of the length and boundary width can be used to scale the line extraction toward 
certain size on linear elements. 
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Figure 2: Effects of changing parameters in the line extractor on the resulting gradient images. a, Effects of 
homogenously changing kernel (l=line length, w=line width, b=border width), changing angles and increasing 
sensitivity on a circular test patch. b, Effects kernel changes according to different line widths (w), lengths (l) 
and border widths (b) on a linear test patch. 
 
According to field observations and previous reports [Grandjean et al., 2007; Niethammer et 
al., in press] the dimensions of fissures in clay-rich landslide may vary between 0.1 - 0.4 m in 
width, and from dm to several meters in length. Those values provided some boundary 
conditions for the parametrization of the line extraction, which after several trials were fixed 
at 0.2 m line width (boundary-width=2x line width) and a length of 0.8 m. Further inputs for 
the line extractor are the variance of the image and the selection between dark lines (negative 
gradient) and bright lines (positive gradient). In this work we focus on the extraction of dark 
linear elements corresponding to open fissures at the surface. The sensitivity was kept at the 
default of 0.9. The exclusion of certain fissure orientation a priori is not desired in the given 
case and hence the extraction was run iteratively at all angles (stepwitdth = 5º) and the 
resulting gradient images were summed up into a single layer. An automatic histogram-based 
thresholding on the resulting layer is subsequently used to generate candidate objects for 
fissures (Fig. 3b). The documentation of the proprietary software does not provide details on 
the implemented thresholding methods. However, in a comparison of the thresholds with 
those obtained from 17 different thresholding methods implemented in the OpenSource image 
processing software Fiji (http://pacific.mpi-cbg.de), the rather traditional method after Otsu 
[1979] yielded the same results in all tested cases. 

http://pacific.mpi-cbg.de/�
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Figure 3: Generalized methodological flowchart for 
the mapping of fissures and elimination of false 
positives. 

Fissure areas demonstrated a high 
heterogeneity of grey values and 
homogenous image patches (GLCMMean 

<0.2) were excluded (Fig. 3c). A significant 
amount of false detections was induced by 
vegetated patches and shadows. The green 
to brownish color of the vegetation 
corresponds to a relatively low ratio of the 
blue channel. Consequently vegetation 
appears as dark patches when the blue 
channel is divided by the sum of all 
channels. For summer month with active 
vegetation the ratio of the green channel 
was implemented as an additional optional 
stop to verify the results and Otsu’s 
thresholding method was then applied on 
both bands to classify vegetation (Fig. 3d). 
A number of further criteria were used to 
suppress patches smaller than 0.2m2, with a 
strong elongation and very low values in 
the green channel (<120) from the 
vegetation class. Consequently, all fissure 
candidates that completely overlapped or 
shared 15% of their border with the 
mapped vegetation were excluded as false 
positives. 
Images recorded with direct sunlight on the 
surface show a high contrast of the fissures 
but also feature several shaded zones 
induced by the micro- and macro- 
topography of the landslide surface. An 
empirical threshold was found for the grey 
values in the red channel (<110) to classify 
shadows and all line candidates which were 
found to be located in the shadowed areas 
(>33% of the direct surrounding shadowed) 
were excluded. The observed fissures are 
presumably induced by kinematic 
discontinuities and corresponding stress 
fields in the moving mass and are typically 
concentrated in a local neighborhood. We attempted to address this issue in a subsequent step 
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excluding all linear features smaller than the initially defined 0.8 m, and without any other 
fissures in a surrounding of half this distance (Fig. 3f). 
In the final step of the workflow false positives that originate from larger linear structures 
such as gullies or the borders of the moving mass were addressed. For this purpose the line 
extractor was parameterized toward this larger features (length = 7m, width = 1.2 m) and 
those larger lines were classified in the same way as previously the fissure candidates. The 
larger linear features were linked with overlapping fissure candidates and empirical thresholds 
were determined to distinguish between false positives that actually belong to larger structures 
(> 20% of the area fall into the larger structure, difference in the main direction of the angels 
< 25º) and actually existent fissures (Fig. 3f). 
 
3. Results and Discussion 

 
The workflow was structured and parameterized as described above and applied to UAV 
images from three different time steps. The resulting maps are displayed in Fig. 4 and provide 
detailed information about the location and size of individual fissures and vegetation patches 
as well as their overall spatial patterns. To evaluate the obtained results the map obtained for 
July 2008 was compared qualitatively to an expert map based on field mapping and image 
interpretation for the same time step. It can be observed that especially for highly fissured 
areas both maps provide very similar spatial patterns (highlighted with bright outlines in Fig. 
4 b) but it also must be noted that the automated mapping detects a substantially greater 
amount of relatively small linear features. The generally smaller size (length) and higher 
number of fissures resulting from the automated approach indicates a different degree of 
generalization when compared to the expert map. Furthermore it should be considered that the 
accuracy of both mappings is a priori unknown, and that higher localization uncertainties have 
an especially strong impact on the overlap of two quasi-line datasets. Creating a 0.2 m buffer 
on the lines  
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Figure 4: (a) Expert map of surface fissures based on filed work and photo-interpretation in July 2008. (b-d), 
Results of the automated mapping of the vegetation and surface fissures for July 2008 and two further time-
steps. 
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Figure 6: Example for simple 
heuristics to enhance network 
connectivity. 

 

 
Figure 5: Comparison between the fissure density maps obtained for the July 2008 from the expert mapping (a) 
and the automated mapping (b).  
 
provided from the expert resulted in measures for completeness and correctness lower than 
30% with the polygons from the automated mapping. For a further quantitative comparison of 
the results we considered calculation of density maps which were derived using a circular 
kernel with a diameter of 3m. Fig. 5 shows that results from both maps correlate to some 
degree, whereas the scattering of the density values (Fig. 5c) also illustrate that the results still 
comprise considerably uncertainties. 
 
4. Conclusion and Perspectives 

 
The current version of automated mapping workflow is 
relatively sensitive to small linear features resulting in a 
generally higher number and density of detected fissures. 
This appears to be partially the result of true over-
detection, which appears generally more pronounced in 
strongly illuminated images (July 2008), but also of 
different levels of generalization compared to the expert 
mapping. Although, the sensitivity of the line extractor is 
adjusted according to overall image variance, further 
normalization techniques should be tested to better 
account for variable illumination conditions among the 
different time steps. In this context it might also be 
helpful to include also optional steps to allow user interaction for sampling, where the sample 
could serve for prescreening of potentially fissured areas and an adjustment of hardcoded 
thresholds according to image and sample statistics. 
Further efforts are also needed to implement parameters that allow for the scaling of the 
resulting maps, and simple heuristics to enhance the connectivity of neighboring lines (Fig. 6) 
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are important in this context, since the would allow to interpolate between fracutred linear 
elements and exploit further information inherent in the network. 
Beside quantitative differences between the two mappings it is worth highlighting also a few 
qualitative differences. An expert mapping allows to distinguish among different fissure types 
that reflect different mechanical processes (Fig. 4a), and a similar automated classification 
could be achieved by relating the main direction of the fissures to topographic information. 
The expert map also highlighted several compression ridges, which are visible as linear 
structures in the image but would need a differently structured workflow. 
Though further enhancements and tests are needed to increase the accuracy of the results and 
the robustness of the method, it was possible to demonstrate that an automated mapping 
workflow can yield detailed maps of surface fissures and other surface features. On the 
selected images the workflow runs within 8-12 minutes and produces not only map of the 
fissures (including fissure width in integer pixel values) but also maps the vegetated areas. 
UAVs provide a cost-efficient option to acquire images with ultra-high spatial resolution and 
open a new window for geomorphological studies. As the technical design of the platforms 
and sensors advances and such image types become more commonly available, further studies 
are needed to better explore the types of information that can be extracted. Key issues thereby 
will be synergetic combination of image features, spatial context and knowledge of the 
physical processes.  
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3.2. INTERPRETATION OF RADAR IMAGERY 

3.2.1. Data acquisition 

Active microwave sensors, also called Radar, use electromagnetic waves of wavelengths from 
1 mm to 1 m artificially emitted by antennas. These technologies have been developed for 
about one hundred years, but this is in late 1940’s that, for military reconnaissance purposes, 
major advances were achieved [Woodhouse, 2006]. Then, the first civilian application at a 
large scale was setup to map the Panama’s province of Darien, acquiring Radar mosaic 
images of a 20’000 km2 ground area that has never been photographed before due to a 
permanent and dense fog [Lillesand et al., 2008]. Even if first environmental remote-sensing 
applications were performed from aerial platforms, today the majority of the Radar images are 
acquired from spaceborne platforms. Indeed, the fly and the trajectory of the platform have to 
be as stable as possible and perfectly knew (reasonable in a satellite, not yet from airplane) to 
perform Synthetic Aperture Radar (SAR) images [Wiley, 1954]. 

SAR images are now the raw data of each Radar-based environmental application, 
with a ground resolution from 30 m (Envisat platform) to 1 m for the last generation of 
devices (TerraSAR-X platform). Usually, spaceborne sensors are emitting radio waves in the 
bands X, C and/or L, according to regulations of the International Telecommunication Union. 
Then waves are back-scattered by the Earth’s surface and sensors record the amplitude and 
the phase shift of the returned signal (Figure 4). Thus the complex image (amplitude and 
phase) acquired constitutes the raw level of data on which main of remote-sensing algorithms 
are processed. 

 
Figure 4: raw SAR image with the return amplitude signal (left) and phases (right) of Bam area in Iran, 
December 2003 (free Envisat data, shown in the SafeLand deliverable 4.1). 

The longer the wavelength is, the worse the accuracy is both in terms of spatial 
resolution and measurement precision, but better are the penetration capacity and the stability 
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of the returned signal with respect to environmental changes. Today, in 2011, the mostly used 
images are acquired by seven platforms operated by the Canadian, European, German, Italian 
and Japan space agencies (resp. CSA, ESA, DLR, ASI and Jaxa). The main characteristics of 
these systems are resumed within the Table 3. 

Table 3: Main key features of the seven most used systems for civil Radar environmental applications.
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The principles Radar technologies and applications are described in many 
publications, books and encyclopedias. About the radar imaging part used in environmental 
and Earth sciences, Massonnet and Feigl, [1998], Hanssen [2001], Woodhouse [2006], 
Lillesand et al. [2008] or the SafeLand deliverable 4.1 [Michoud et al., 2010] provide worthy 
introductions and overviews. 

3.2.2. Data analysis 

A. Surface change detection with classical SAR Interferometry (DinSAR) methods  
[UNIL] 

As already noted, InSAR techniques were originally used to produce topographic maps. Then, 
in 1985, Massonnet [1985] published a technical report on the possibility to map temporal 
changes of the Earth’s surface, “removing the signal of the topography” inside interferometric 
scenes. He applied for the first time the concept of Differential InSAR for ground 
displacement detection. Indeed, as described in details in the SafeLand deliverable 4.1 
[Michoud et al., 2010], DInSAR techniques aim to compare the phase shift of returned signals 
of two SAR images of a same area acquired from two different point of view and/or at 
different times. Its main application is to detect and quantify small ground displacements 
(Figure 5). More information about theoretical considerations is available in Massonnet  and 
Feigl [1998], Lauknes [2004], Catani et al. [2005], Colesanti  and Wasowski [2006], 
Woodhouse [2006], Ferretti et al.[2007] and is summarized in the SafeLand deliverable 4.1 
[Michoud et al., 2010]. 

 
Figure 5: the ground displacement, as a landslide, influences the phase shift of a Radar returned signal. The way 
of the signal on the Slave SAR image is longer than the way of the signal on the Master image, due to the 
displacement created by the rotational landslide. This additional distance produces a phase shift that can be 
detected and interpreted as an active area on susceptibility maps (SafeLand deliverable 4.1). 
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First DInSAR studies applied to changes in the Earth’s Surface concerned co-seismic 
field displacements [Massonnet et al., 1993] and post-seismic readjustments [Massonnet et 
al., 1996] induced by the 1992 Lander’s earthquake (California), where the authors were able 
to detect movements of 28 mm along an active fault, during the three years that followed the 
seismic event. Later, Fruneau [1996] and Carnec et al. [1996] presented two monitoring 
studies of the temporal displacement evolution of the “La Clapière” landslide (France) using 
simple SAR interferometric pairs. Afterwards, Squarzoni et al. [2003] were able to assess the 
movements of the “La Valette” mudslide (France) during nine years thanks to archived Radar 
scenes (Figure 6). Then, Singhroy and Molch [2004] advised to use DInSAR techniques to 
support field survey in case of large rockslides, because precursory deformations were visible 
on interferometric pairs processed prior to a major rock fall. 

 
Figure 6: Interferogram of the ”La Valette” landslide processed with two SAR scenes acquired by the ERS-
tandem mission (temporal baseline: 1 day). The detected phase decay (one fringe: 28 mm) is due to 
displacements detected along the line of sight [from Squarzoni et al., 2003]. 

Even if these studies showed very promising results, they all find major limitations, 
mainly caused by temporal decorrelations [Massonnet and Feigl, 1998] and atmospheric 
artefacts [Zebker et al., 1997]. Then, since Ferretti et al. [1999; 2000] and the development of 
the Permanent Scatterer technique, all Advanced InSAR methods use now a large multi-stack 
of SAR images in order to overcome those limits, providing more accurate and reliable 
results. 
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B. Surface change detection with advanced SAR Interferometry (A-DInSAR, PS-
INSAR) methods 

[UNISA] 

The analysis of slow-moving landslide phenomena has been proven to be valuably enhanced 
by the use of remote-sensing data such as those acquired by space-borne Synthetic Aperture 
Radar (SAR). This contribution is further enhanced via the development of innovative 
algorithms – such as those adopted for multipass Differential Interferometric Synthetic 
Aperture Radar (DInSAR) image processing (A-DInSAR, PS-INSAR) – which allows, even 
over large areas, the retrieval of around 20-year displacements of the topographic surface at 
fairly affordable costs. The scientific literature is rich of case studies showing how these 
techniques can turn out to be useful in furnishing input data for i) the landslide 
characterization (detection of unmapped phenomena [Cascini et al., 2010; Farina et al., 
2006]; ii) the check of the boundaries and of the state of activity, see [Canuti et al., 2004; 
Cascini et al., 2008; Farina et al., 2006] iii) the monitoring at different scales of both the 
phenomena and the structure/infrastructures interacting with the affected areas [Cascini et al., 
2008; Farina et al., 2006]. The potential of the use of DInSAR data is testified by their 
increasing diffusion, as recently recorded worldwide with several different applications 
(European Space Agency's (ESA) projects MASMOV, ALPS, SLAM, TERRAFIRMA, 
etc.).This growth is remarkable in Italy, where a pioneering project (Piano Straordinario di 
Telerilevamento Ambientale) was launched in 2002 (Italian Law 179/2002), as well as in the 
Campania region (southern Italy) thanks to the PODIS-TELLUS project (2008). Both projects 
were set up to enhance the availability of DInSAR data and promote their use in the field of 
land management. 

C. Correlation of high resolution SAR images 
[BRGM] 

Recently launched X-band radar satellites are capable to acquire images at sub-metric 
resolutions (TerraSAR-X and Cosmo-Skymed) equivalent to those provided by optical 
sensors widely used for image correlation (Spot 5, Quickbird, etc.). In this context, the SAR 
data has become an interesting alternative to optical data for image correlation techniques 
applied to ground surface deformation. For a given study site High Resolution SAR data can 
be obtained with coherent acquisition modes and orbital configuration, and with reliable 
temporal resolution since the image acquisition is relatively independent from local weather 
conditions. Among the currently available techniques for the correlation of SAR images we 
can distinguish between speckle tracking [Gray et al., 2001], Isolated Point Scatterer (IPS) 
[Serafino, 2006], normalized cross-correlation (NCC) [Strozzi et al., 2002] and Maximum 
Likelihood texture tracking [Erten et al., 2009; Harant et al., 2011]. Another available 
technique is the spectral diversity technique [Prats et al., 2009; Scheiber and Moreira, 2000] 
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but requires a coherent set of SAR scenes to create interferograms. To the best of our 
knowledge the technique has not yet been applied in the context of landslide but provided 
promising results for the monitoring of glacier kinematics (Figure 7). 

 
Figure 7: (a) Velocity map for the Inyltshik glacier in Kyrgyzstan for a three month period as derived from 
Maximum Liklihood texture tracking on ENVISAT-ASAR[Erten et al., 2009]. (b) 2D surface velocity field of 
the Aletsch glacier derived with the spectral diversity technique on L-band airborne SAR images[Prats et al., 
2009]. 

3.2.3. Innovative case studies 

The following section demonstrates the use of radar imagery via short summaries of five 
recently published or submitted research works carried out within SafeLand or through sister 
projects. 
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Persistent Scatterers hotspot and clustering analysis for detection 
of slow-moving landslides 

Application: Landslide hotspot mapping 
Technique: Active spaceborne SAR sensors 
Main references: Lu, P., F. Catani, N. Casagli and V. Tofani (2009): Hotspot analysis of 
Persistent Scatterers (PS) for slow-moving landslides detection.  
Contributors: UNIFI (P. Lu, F. Catani,  N. Casagli, V. Tofani) 

Abstract 

SAR interferometry (InSAR) has already shown its significance for landslide mapping. However, temporal 
decorrelation and atmospheric disturbances limit the usefulness of traditional differential InSAR techniques. The 
recently developed Persistent Scatterers (PS) technique removes the temporal decorrelation and atmospheric 
artifacts by generating radar benchmarks derived from a multi-interferogram analysis of SAR images. PS are 
suitable for investigating slow moving landslides because they are able to detect ground displacements with the 
accuracy of millimeters. However, because of the large number of PS that can be identified, the effective 
extraction of information useful for landslide studies from this technique sometimes remains difficult. With the 
aim of mapping landslides rapidly and (semi-)automatically, we perform the hotspot analysis on the PS present 
within the Arno river basin (Italy) using spatial statistics approach. We process 4 years (2003-2006) of 
RADARSAT SAR images within the basin so as to identify slow moving landslides and meanwhile update the 
existing landslide inventory. We apply the Gi* statistics in our study for the local test on PS datasets. We use the 
velocity of PS as the weighting factor and calculate the Gi* index for each single PS. The result indicates that 
both high positive and low negative Gi* values express the clustering of relatively rapid mass movements. The 
high positive values suggest movement towards the sensor along the satellite Line-of-Sight (LOS) whereas the 
low negative values imply movement away from the sensor. Moreover, we employ the kernel function for PS 
density estimation based on the Gi* values. The output is the hotspot map which emphasizes the existing mass 
movement. We consider that our methodology offers an innovative tool for extracting useful information from 
PS, thus providing an effective way of landslide rapid mapping. 
 
Keywords: landslide hotspot mapping; InSAR, Persistent Scatterers 

1. Introduction 

Remote-sensing is useful for landslide studies. SAR interferometry (InSAR) is an important 
branch of remote-sensing [Bamler & Hartl 1998]. It is valuable for landslide mapping and 
monitoring [Corsini et al. 2006]. Combined with both amplitude and phase parameters, an 
interferogram can be generated with the radar images of the same area. After unwrapping 
interferogram fringes, it is capable to detect ground movement with millimetric accuracy 
[Massonnet & Feigl 1998]. However, the usefulness of traditional differential InSAR 
(DInSAR) techniques is limited by factors such as temporal decorrelation and atmospheric 
disturbances [Fruneau et al. 1996, Massonnet & Feigl 1998, Kimura & Yamaguchi 2000, 
Ferretti et al. 2001]. The Persistent Scatterers (PS) technique is a recently developed InSAR 
approach. It is patented by the Politecnico di Milano and is commercially available through 
the POLIMI spin-off company Tele-Rilevamento Europa (TRE). PS technique produces radar 
benchmarks derived from a multi-interferogram analysis of SAR images. The temporal 
decorrelation and atmospheric artifacts can be meanwhile estimated and removed (Ferretti et 
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al. 2001). Some successful cases have shown the suitability of PS for investigating slow 
moving landslide [Colesanti et al. 2003, Casagli et al. 2005, Farina et al. 2006]. 
However, the effective extraction of useful information from this technique for landslide 
studies is sometimes difficult due to the large number of PS that can be present, thereby 
entailing long interpretation times. In the places where there are a lot of stable reflectors such 
as buildings and bared rocks, the PS density is higher than 500 PS/km2. Large number of PS 
calls for an efficient approach of data processing. Still, with the quick development of new 
SAR sensors and efforts of increasing PS density, the PS data is expected to be updated more 
frequently with higher density. Thus, an effective approach of data interpretation is needed. 
With the intention of developing an effective procedure for landslide mapping from PS, we 
introduce a spatial statistical approach on the PS analysis, choosing the Arno river basin 
(Italy) as the study area. The aim is to employ PS processed from 4 years (2003-2006) of 
RADARSAT SAR images to identify slow moving landslides within the basin. We consider 
this spatial statistics approach as an effective way for landslide mapping, thus providing an 
innovative approach for the rapid extraction of useful information from PS.  

2. Study area 

The Arno river basin is located in the central Italy (Fig. 1). The total area of the whole basin is 
about 9130 km2. The basin is across of Apennines chain. As a result, 7190 km2 of the basin is 
situated in the mountainous and hilly area. The basin is very susceptible to landslides. More 
than 27,000 landslides were mapped. The affected landslide area is more than 800 km2. These 
landslides are dominated by earth slides and flows (about 74%) as well as shallow landslides 
and creeps [Catani et al. 2005a, Farina et al. 2006]. Most of these slide movements are slow 
and intermittent, accompanied with accelerations due to the prolonged and intensive rainfall. 
The concentration of precipitation periods also accounts for the landslides activity transition 
from dormant to active [Catani et al. 2005b]. More than 16,000 civil buildings, 460 industrial 
areas and 350 km roads are affected by landslides. In addition, ca. 6 billions Euro losses are 
expected in the upcoming 30 years [Catani et al. 2005b].  

Figure 1. Location of the Arno River Basin  
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3. Methodology 

3.1. Persistent Scatterer Interferometry 

PS technique is a long-term multi-image interferometric approach. A series of interferometric 
SAR images are referred to a unique master acquisition. PSInSAR is able to overcome the 
main disadvantages of DInSAR (temporal decorrelation and atmospheric disturbances). The 
temporal decorrelations can be removed by using long temporal series of SAR images along 
the same satellite orbit. Also, the atmospheric disturbances can be estimated so as to remove 
the produced artifacts [Ferretti et al. 2001]. The interferometric phase is analyzed on a pixel-
by-pixel approach. With the generation of multi-interferograms, stable radar benchmarks can 
be identified based on the coherence map. The output of PS technique is a set of sub-pixel 
points with high coherence corresponding to phase stable radar targets. These targets include 
man-made structures (buildings, dams and bridges) and natural reflectors (bared rocks). The 
velocity of each single PS can be estimated by performing the statistical analysis on the 
amplitudes of the electromagnetic returns. The detailed description of PS can be found in 
Ferretti et al. [2000, 2001]. 
A PS dataset of 4 years of RADARSAT images spanning from March 2003 to January 2007 
is available for the Arno river basin. The data have been processed by TRE on behalf of the 
Arno river basin Authority. Since the acquisition circle is 24 days, more than 46 
RADARDSAT images are utilized for PSInSAR analysis. These images are captured in the 
beam mode of S3, which gives the incidence angle ranging between 30 and 37 degrees. The 
used track number of RADARSAT for the basin is 54 for descending and 247 for ascending 
images. These two tracks cover about 6300 km2, approximately 70% area of the whole basin. 
Totally more than 700,000 PS are identified. The density of ascending PS is 54 PS/ km2 and 
the density of descending data is 59 PS/ km2. The PS located within the flat area is then 
masked so as to only focus on the movement in mountainous and hilly areas.  

3.2. Hotspot and clustering analysis 

The purpose of the hotspot and clustering analysis is to identify concentrations of high 
velocity PS. The analysis is based on the two statistics approaches: Getis-Ord Gi* statistics 
and kernel density estimation. 
  
3.2.1 Getis-Ord Gi* statistics 

The Getis-Ord Gi* statistics is a kind of local spatial statistics which represents the association 
up to a specified distance. In the study we apply Gi* statistics to evaluate the spatial clustering 
of neighboring PS. The Gi* index is defined as follows [Getis & Ord 1996]:  
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wij(d) is the spatial weights vector. It is defined within the searching distance d from the PS 
whose velocity is x. Each single PS is at a site i with its neighbors j within the distance d. In 
the study, all the PS are treated as the same weight, namely 1. 

In order to define the searching distance of d, for each pixel (10m) of the DTM of the Arno 
river basin, both the shortest path to a channel (d1) and the ridge (d2) are calculated based on 
steepest descent direction. The searching distance of each pixel (di) is calculated as the mean 
value of d1 and d2, simulated as a measure of landslide length along the slope. The estimation 
of the searching distance d is based on the mean value of all DTM pixels. In the case of the 
Arno River basin, the searching distance d is 114m compared with a DTM of 10m resolution. 

We apply the Gi* statistics in our study and perform the local test on PS datasets. We choose 
the velocity of PS as the weighting factor and calculate Gi* index for each single PS. The Gi* 
index measures concentrations of high velocity PS for the entire study area. The larger 
(positive) the Gi* index is, the more intense the clustering of high velocity values, with the PS 
moving direction towards Line-of-Sight (LOS) of the satellite. The smaller (negative) the 
value is, the more intense the clustering of low velocity values (negative), with the PS moving 
direction away from LOS. 

3.2.2 Kernel density estimation 

The following procedure is to estimate PS density using kernel calculation. The kernel density 
estimation [Silverman 1986] uses a kernel estimator which is defined as: 
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We employ this kernel function for PS density estimation, choosing the previous derived Gi* 
index as the weight. The output is a smooth density map adding the values of kernel function. 
It indicates the existing hotspot of high velocity mass movement.  

4. Result and discussion 

Figure 2 shows one part of the hotspot map derived from the same SAR image frame. The 
area is within the Arno river basin covering the Pistoia-Prato-Firenze and the Mugello basin. 
Both the ascending (Fig 2a) and descending (Fig 2b) hotspot map are displayed based the 
result of kernel density estimation. Clustering of positive velocity PS (moving towards LOS) 
is rendered with blue hotspot while clustering of negative velocity PS (moving away from 
LOS) is rendered with red color. The deeper color it displays, the more intense clustering of 
higher velocity PS. The radius of the hotspot implies the dimension of the potential landslide-
affected area. Figure 3 is the hotspot map with the overlay of both ascending and descending 
hotspot map. The magenta areas are the combination of red and blue hotspots. They indicate 
the different moving directions of PS from different ascending and descending orbits. Still, 
the deep blue and deep red hotspot indicate the same moving directions detected from the 
ascending and descending PS. 

The clustering of high velocity PS is able to detect landslide considering LOS of satellite and 
down-slope landslide movement can especially be detected from PS moving away from 
sensor. According to the previous studies and existing landslide inventory map, some of the 
detected hotspots are confirmed to be the mass movements resulting from slow moving 
landslides. Hence, the hotspot map is expected to be an important source for the following 
study of landslide inventory updating. However, detection errors exist when such mass 
movement is related to other geophysical processes that PS can identify. The major errors are 
attributed to uplift and ground subsidence. Moreover, the hotspot sometimes shows the 
limitations in separating landslide movement from other geo-processes. For example, if an 
area is subject to both landslide and subsidence, the hotspot analysis possibly only yields the 
result of one big hotspot. This hotspot however fails to separate these two kinds of mass 
movement. Such problems are mainly resulted from the current limitations of PS technology 
for detailed interpretation of mass movement. 
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Figure 2. Part of the hotspot map of the Arno river basin, including the Pistoia-Prato-Firenze and Mugello basin area: a) hotspot 
map derived from kernel density estimation using ascending RADARSAT PS; b) hotspot map derived from kernel density 
estimation using descending RADARSAT PS. Red Hotspot (low negative kernel density) indicates the clustering of high 
velocity PS moving away from LOS whereas blue hotspot (high positive kernel density) implies the clustering of high velocity 
PS moving towards LOS. 
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Updating landslide inventory maps in mountain areas by means of 
Persistent Scatterer Interferometry 

Application: Landslide hotspot mapping 
Technique: Satellite radar sensors 
Main references: Cigna, F., S. Bianchini, G. Righini, C. Proietti, and N. Casagli (2010): 
Updating landslide inventory maps in mountain areas by means of Persistent Scatterer 
Interferometry (PSI) and photo-interpretation: Central Calabria (Italy) case study  
Contributors: UNIFI (F. Cigna, S. Bianchini, G. Righini, C. Proietti, N. Casagli) 

Abstract 

Conventional methods used to detect slope instability and map geomorphologic processes, especially in 
mountain areas, can benefit from remote-sensing analyses, optical and radar satellite data. We illustrate the 
contribution of Persistent Scatterer Interferometry (PSI) and photo-interpretation for the updating of pre-existing 
landslide inventory maps in mountain areas, through the case study of Central Calabria, located in southern Italy 
with an extension of 4,470 km2. We used 108 ENVISAT ascending images (20 m ground resolution) acquired in 
2003-2009 and processed with the PSP (Persistent Scatterer Pairs) technique, 1 optical image acquired by SPOT 
satellite (2.5 m resolution), and digital orthophotos with 1 m resolution covering the whole investigated area. All 
these data were integrated and combined with additional ancillary information (topographic, geological and land 
use maps). 980 landslides (23.9% of pre-existing inventory) were updated by means of PSI information and 64 
new landslides were also detected. The state of activity and the intensity of these landslides were also updated 
and/or evaluated, showing that 22% and 2% of the updated inventory include active (919 landslides) and 
reactivated (93 landslides) phenomena respectively. The outcomes of the integrated radar-interpretation and 
photo-interpretation methodology for Central Calabria and its operative usefulness for civil protection authorities 
represented a valuable proof of the reliability of this approach for updating landslide inventory maps in mountain 
areas at regional scale. 
 
Keywords: landslide; Persistent Scatterers; state of activity; landslide inventory 

1. Introduction 

Many urban settlements in mountain regions are developed without taking into account 
landslide hazards and their potential consequences on local population [Schuster and Fleming, 
1986]. Proper identification and mapping of such phenomena, together with a good urban 
planning, facilitate the mitigation of geological risks and the reduction of damages and 
economic impacts.  
In mountain regions, the use of ground-based instrumentation is not always economically and 
practically suitable to perform a systematic control of natural phenomena, because of both 
huge extension and inaccessibility of the investigated areas. Radar and optical remote-sensing 
techniques represent therefore a valuable tool for landslide identification and mapping, which 
are fundamental activities for landslide hazard and risk assessment. 
In the last years, many different InSAR (Synthetic Aperture Radar Interferometry) techniques 
for measuring ground deformations have been developed and experimented to analyze 
different geological processes and dynamics, such as land subsidence, slow moving 
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landslides, tectonic motions, and volcanic activity [Massonnet and Feigl, 1998; Singhroy et 
al., 1998; Ferretti et al., 2001; Hilley et al., 2004; Salvi et al., 2004; Bürgmann et al., 2006]. 
Multi-temporal InSAR analyses (Persistent Scatterer Interferometry, PSI), integrated and 
coupled with in situ investigations and surveys together with photo-interpretation, can 
successfully support conventional landslide studies at local and regional scale, thanks to the 
measurement and monitoring of ground deformations with millimetre accuracy and also the 
reconstruction of the history of deformations of the investigated areas [Farina et al., 2008; 
Casagli et al., 2009; Cigna et al., 2010a, 2010b]. 
We present an integrated methodology for the updating of pre-existing landslide inventory 
maps in mountain areas, based on the combination of thematic maps (topographic, geological, 
land use maps) and optical (orthophotos and optical satellite images) data with multi-temporal 
ground deformation measures extracted by means of multi-pass InSAR. We discuss potentials 
and limitations of this approach through an application to the test site of Central Calabria, 
located in southern Italy. This region is extensively affected by slow landslides threatening 
urban settlements and consequently fits very well the potentials of radar analyses. 
 
2. Central Calabria (Italy) 

2.1 Geological and geomorphologic background 

The investigated area is the central part of the Calabria peninsula in Italy and includes part of 
the provinces of Cosenza, Catanzaro, Crotone and Vibo Valentia, with a total area of 4,470 
km2. Most of the outcropping basement is composed of Hercynian and Alpine crystalline and 
metamorphic allochthonous complexes, with associated Eocene and Lower Neogene 
sedimentary sequences [Van Dijk et al., 2000]. Along the internal side of the Calabrian Arc, 
Mesozoic carbonate rocks similar to the Apennine allochthonous units crop out in windows 
below this basement. The contact between the basement units is overlapped at a low angle, 
obliterated by successive high-angle faults. Terrigenous Tertiary sequences are present as 
remains along the over-thrust contacts between these basement units and also as tectonic 
wedges along the fault zones at a higher angle. All these rocks are crossed by a complex 
group of high-angle faults, which can be organized in major systems and patterns, partly 
correlated to transcurrent faulting [Van Dijk et al., 2000]. The geological structure is 
characterized by low-angle thrusts, dissected by high-angle faults with oblique movement 
components [Guerricchio, 2004]. The geomorphologic setting is characterized by widespread 
slope movements. In particular, several slow moving slides and complex slide-flows can be 
recognized and, secondarily, severe erosion and superficial rapid slope movements. Earth 
slides involve metamorphic rocks and earth flows affect Pliocene deposits. Moreover, 
landslides generally show recent morphologies, indicative of new activations. Along the 
eastern border of the Coastal Chain, large-scale and deep-seated gravitational landslides can 
also be recognized [Iovine et al., 2006].  
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N° of landslides

Landslide area 

Total 4,102

Total 325 km2

 
Figure 1: Pre-existing landslide inventory for the area of Central Calabria (Italy) displayed on a Google Earth 
map (left). Main statistics for the pre-existing inventory are summarized inside the pie charts (right). 

2.2 Pre-existing landslide inventory map 

The official landslide inventory map available for Central Calabria is part of the 
Hydrogeological Setting Plan (PAI, Piano di Assetto Idrogeologico) of Calabria Region, 
published in 2006 and distributed by the Regional River Basin Authority. Inside the 
investigated area, a total of 4,102 landslides are mapped, 861 (21%) of which are classified as 
active, 3,220 (78%) as dormant and 21 (1%) as stabilized (the reference year is 2006). 
Landslides cover an area of 325 km2, corresponding to 7.3% of the whole territory (Figure), 
and the main landslide typologies are represented by rotational slides and flows [Cigna et al., 
2010a]. The inventory of the PAI can be integrated also with the information from the IFFI 
(Inventario dei Fenomeni Franosi in Italia, Landslide Inventory in Italy) inventory, a national 
landslide database published in 2007. Both these sources of information (PAI and IFFI) are 
based on aerial photo-interpretation, field surveys and collection of local databases mapped 
on a reference scale of 1:10,000. 
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3. Landslide inventory map updating 

3.1 Methods 

The methodology relies on the updating of a pre-existing landslide inventory database by 
means of the integration of very high resolution optical images (orthophotos and IKONOS, 
SPOT, QuickBird satellite images) with other thematic data (topographic, geological, land use 
maps), combined with ground displacement measurements provided by a Persistent Scatterer 
Interferometry (PSI) analysis. In particular, the methodological approach uses the ‘radar-
interpretation’ [Farina et al., 2008] and photo-interpretation methods and it is based on the 
possibility of extending and assigning a spatial meaning to the point-wise ground 
displacement measurements provided by the PSI technique, through the interpretation of 
aerial and satellite optical imagery and other ancillary data. 
The contributions of this integrated analysis to the updating of pre-existing inventories consist 
in the following facets [Cigna et al., 2010a]: i) detection of geomorphologic phenomena not 
emerged from conventional field analyses or bibliographic studies; ii) verification or 
modification of landslide boundaries; iii) assessment of representative ground deformation 
rate for each phenomenon; iv) definition of state of activity; v) assessment of main direction 
of displacements (reconstruction of vertical and horizontal EW deformation components, 
combining ascending and descending data – if available). 
 
3.2 Input data 
 
The different types of input data that are necessary to perform the updating of a pre-existing 
landslide inventory map through this integrated analysis, can be grouped in two categories: 
ancillary and PSI data. 
 
3.2.1 Ancillary data 
Ancillary data generally include thematic maps (topographic, geomorphologic, geological and 
land use maps) and optical images (both aerial and satellite data). 
In particular, for the Central Calabria test site we collected the following ancillary data: 
 

- 1:25,000 topographic map distributed by IGM (Military Geographic Institute) and 
1:10,000 map from the Regional Cartographic Center (RCC); 

- Digital Terrain Model (DTM) with 20 m spatial resolution; 
- Regional geological map at 1:25,000 scale, distributed by RCC; 
- Digital colour orthophotos from Volo Italia 2000 (not stereo), with 1 m resolution;  
- SPOT multispectral image acquired in 2005 with 2.5 m resolution; 
- CORINE Land Cover map [Perdigao and Annoni, 1997] at 1:50,000 scale (the 3rd 

classification level was used), published in 2000 and distributed by ISPRA (Istituto 
Superiore PRotezione Ambiente). 
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3.2.2 PSI data 
Today many archives of SAR images are available, including both historical data acquired 
since the early ‘90s (ERS1/2 images) and images from currently operating SAR satellites 
(ENVISAT, RADARSAT1/2), spanning a time interval of more than 17 years. However, the 
choice of the best radar data stacks for a given test site is mainly driven by the spatial and 
temporal coverage of these data in the investigated area. As well as for SAR data, many 
different PSI techniques are available today to process multi-temporal SAR data stacks; 
among which, the Permanent Scatterers (PSInSAR; Ferretti et al., [2001]), the PSP 
(Persistent Scatterer Pairs; Costantini et al., [2000]) and the SBAS (Small BAseline Subset; 
Berardino et al., [2002]) approach. 
For the Central Calabria test site we used 108 ENVISAT ASAR (Advanced SAR) images 
acquired along ascending orbits in 2003-2009 and distributed in 3 different frames. SAR data 
were processed by e-GEOS (an ASI/Telespazio Company) by means of the PSP technique, 
providing 348,874 Persistent Scatterers (PS) in the whole area, with a mean target distribution 
of 78 PS/km2 [Cigna et al., 2010a]. For each PS, the following measures were extracted: 
 

- geographic coordinates (latitude, longitude and elevation), with meter precision; 
- average LOS (Line Of Sight) displacement rate in 2003-2009, with a precision of 

about 1 mm/yr (depending on the number of available images, the phase stability of 
each PS and its distance from the reference point); 

- 2003-2009 displacement time series (i.e. LOS displacement at each acquisition), with 
millimetre (mm) precision. 
 

3.3 Updating procedure 
 
Following our methodology, the updating of the pre-existing landslide inventory database is 
obtained through the integration of traditional photo-interpretation with the radar-
interpretation approach. This methodology has been recently developed and validated by the 
scientific community (PREVIEW and Terrafirma projects; [Casagli et al., 2008, Cigna et al., 
2010a, Pancioli et al., 2008, Righini et al., 2008, Herrera et al., 2009]. The entire process, 
including the analysis and interpretation of all the available data, is carried out in a 
Geographic Information System (GIS) environment. 
In general, the updating of a pre-existing landslide inventory can lead to the identification of 
new landslides, the modification of boundaries of pre-mapped phenomena and the assessment 
(or updating) of their state of activity [WP/WLI, 1993] and landslide intensity [Cruden and 
Varnes, 1996], integrating qualitative (state of activity) and quantitative information 
(intensity; here defined in terms of movement velocity) of each phenomenon. 
Monoscopic and stereoscopic photo-interpretation of aerial photos and satellite optical images 
are the conventional tools for the identification and mapping of ground instabilities, allowing 
the recognition of geomorphologic evidences and indicators of movement (anomalies in 
vegetation coverage) and the shape of unstable areas [Soeters and van Westen, 1996]. For the 
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Central Calabria, we interpreted one colour orthophoto (Volo Italia) and one satellite image 
(SPOT) using the monoscopic photo-interpretation approach and the multispectral analysis 
respectively [Cigna et al., 2010a]. 
In order to evaluate the state of activity and intensity of the phenomena covered by the PSI 
data, we used an activity matrix and an intensity scale (Figure 2), defined in terms of PS 
average yearly velocity and based on the information coming from the pre-existing inventory 
map of the investigated area (i.e. PAI, 2006) and from ENVISAT ascending PSI data (2003-
2009). Representative ground displacement values in 2003-2009 for each landslide are 
determined through the analysis of spatial distribution and frequency of PSI data inside its 
boundaries. These values are then compared to some deformation thresholds (2 and 10 mm/yr 
in the LOS direction, away or towards the satellite) and combined with the landslide 
information extracted from the pre-existing inventory to determine the state of activity 
(reactivated, active, dormant, stabilized) and intensity (negligible, extremely slow, very slow) 
of each phenomenon (Figure 2).  
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Figure 2: Activity matrix and intensity scale based on ENVISAT PSI measures and the information from the pre-
existing landslide inventory of Central Calabria (Italy). 
 
 
The deformation thresholds used inside the activity matrix and intensity scale are site-specific 
values and they are empirically determined taking into account the characteristics of each 
application, typology of landslides affecting the investigated area, PSI data, LOS direction, 
measurement accuracy, distance from the reference point. Generally, the use of the activity 
matrix is performed through a conservative approach; in other words, the previous state of 
activity of dormant or active landslides is not lowered (to stabilized or dormant, respectively) 
even if PSI data register slow movement rates (lower than 2 mm/yr, away or towards the 
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satellite), unless field evidences and in situ monitoring data confirm an actual lowering of 
activity (Figure 2). 
The interpretation of PSI information, supported by the analysis of the geomorphologic 
evidences through photo-interpretation, can lead to two main conditions (Figure 2): 

· Presence of PS data outside the previous mapped areas, resulting in: 
· new landslide detection, when significant PS velocities, and also geological and 

geomorphologic evidences suggest the presence of a landslide; 
· no additional landslide detection, when geomorphologic and geological setting and/or 

the PS velocity distribution do not confirm the presence of a landslide (other geological 
processes such subsidence or erosion, may also induce significant deformations). 

· Presence of PS data within the already mapped landslides, resulting in: 
· confirmation of the state of activity when the inventory information is in agreement 

with PS data; 
· change of the state of activity when the inventory information is not in agreement with 

PS data; 
· Change of landslide boundaries, when PS data suggests the enlargement (or reduction) 

of the already mapped area. 
 

3.4 Results 
 
An overview of the updated landslide inventory map for the Central Calabria test site is 
shown in Figure 4. The updated landslide inventory provides not only the spatial distribution 
of slow moving landslides – represented as polygons – but also their temporal characteristics 
(i.e. state of activity and intensity) [Cigna et al., 2010a]. 
The radar-interpretation of ENVISAT PSI data gave spatial and temporal information for 980 
landslides (23.9%) of the pre-existing inventory (PAI), updating the boundaries and/or state of 
activity of 144 phenomena and confirming the spatial and temporal characteristics of 836 
phenomena (Table 4). The analysis also allowed us to map 64 new landslides, corresponding 
to 1.5% of the updated inventory (Table 5). The updated map totally includes 4,166 
phenomena, corresponding to an area of 334 km2 (Figue 4). The distribution of the state of 
activity and intensity in the updated inventory (Figure 3) highlights that 229 and 93 of the 
updated phenomena were active or reactivated in 2009 respectively, for a total of 919 active 
(continuous) landslides in the whole updated inventory (corresponding to 60.3 km2; 18%) and 
a total of 93 reactivated phenomena (i.e. 22.6 km2; 7%). Dormant and stabilized landslides are 
3,136 (i.e. 248.7 km2; 74%) and 18 (i.e. 2.2 km2; 1%) respectively (Figure 4). 
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Figure 3: Updating of the pre-existing landslide inventory map for the Central Calabria (Italy): example for the 
area of Catanzaro. PSI data (2003-2009), pre-existing (2006) and updated (2009) inventories are displayed on the 
2000 orthophoto. N.C. and NO INFO designate, respectively, landslides with insufficient number or complete 
absence of PS within the already mapped area. 

N° of landslides

Landslide area 

Total 4,166

Total 334 km2

22%

2%

75%

1%

18%

7%
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Figure 4: Updated landslide inventory map for the area of Central Calabria (Italy) overlapped on a Google Earth 
map (left). Main statistics for the updated inventory are summarized inside the pie charts (right). 



D4.3 Final version 
Creation and updating of landslide inventory maps, landslide deformation maps                      Date:    2011-09-05 
and hazard maps as input for QRA using remote-sensing technology 
 

 
 
Grant Agreement No.: 226479 Page 88 of 302 
SafeLand - FP7 

Table 4: Landslide distribution for the pre-
existing inventory map (2006). 
 

Landslides N°  
Pre-existing 
Inventory 

  %  
Updated  980 23.9 
N.C.* 321 7.8 
NO INFO**  2,801 68.3 
Total 4,102 100 
* Not sufficient number of PS  
** Absence of PS within already mapped 
landslide 

 Table 5: Landslide distribution for the 
updated inventory map (2009). 
 

Landslides N°  
Updated 
Inventory 

  % 
Updated  980 23.5  
New  64 1.5  
N.C. + NO 
INFO* 

3,122 74.9  

Total 4,166 100  
* Not sufficient number of PS and/or 
absence of PS within the already mapped 
landslides 

 

4. Discussion 
 
In the application for Central Calabria, the use of photo-interpretation turned out to be a 
useful contribution for landslide mapping in particular in hilly and mountainous 
environments, where a low density of radar targets was identified. On the other hand, radar-
interpretation contribution was more suitable for most of the landslides involving urban areas 
and the road network, for which the reliability of PSI was higher but photo-interpretation was 
strongly limited by the dense urban fabric [Cigna et al., 2010a].  
The presence of highly vegetated areas frequently led to a lack of PSI measures (due to the 
absence of good radar reflectors). Thus, PSI data did not give any additional information on 
321 landslides (7.8% of the PAI) due to an insufficient number of PS (N.C.), and on 2,801 
landslides (68.3% of the PAI) due to the complete absence of PS within the already mapped 
landslides (NO INFO; (Table 4 and Table 5). In these cases, we did not change the spatial and 
temporal information of the original inventory.  
By using ENVISAT PSI data, or other data with similar acquisition frequency (i.e. 1 image 
per month), the applicability of this integrated approach for the investigation of landslide 
processes is limited to extremely slow (v < 16 mm/yr) and very slow phenomena (16 mm/yr < 
v < 1.6 m/yr), as defined by Cruden & Varnes in 1996. However, the availability of new SAR 
missions with higher temporal frequency, such as TerraSAR-X and COSMO-SkyMed (i.e. 3-
4 acquisitions per month), allows today the opening of new perspectives and scenarios also 
for the analysis of faster phenomena. 
 
5. Conclusions 
 
The outcomes of this study for the test site of Central Calabria provided valuable results, 
demonstrating the suitability of this integrated method for the updating of landslide inventory 
maps using radar remotely sensed data for detection and mapping of slow moving landslides. 
Its operative usefulness for civil protection authorities represents a valuable proof of the 
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reliability of this approach for application in mountain areas and at regional or local scale. 
However, vegetated areas often prevent reflective targets to be identified as PS; moreover, 
fast moving phenomena usually decrease or even compromise also the functioning of PSI 
analyses.  
The analysis for Central Calabria opens new perspectives for the future exportability of this 
methodology in different and various geomorphologic environments (tropical, high mountains 
etc.), as an effective tool to improve risk management activities and focus planning resources 
according to distribution and intensity of landslide hazard. 
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A-DInSAR data analysis towards slow-moving landslide 
characterization 

Application: landslide mapping and characterization 
Technique: A-DInSAR 
Main references: Cascini et al., 2008, 2009, 2010, 2011.  
Contributors: UNISA (L.Cascini, D. Peduto) 

Abstract 

Uncertainties related to the characterization and mapping of slow-moving landslides can be partly overcome by 
integrating conventional techniques with remote-sensing data, such as Advanced Differential SAR 
Interferometry (A-DInSAR). However, standardized procedures for the interpretation and the confident use of A-
DInSAR data, according to landslide zoning developments, have not been fully investigated and validated, 
although algorithms for image processing have become more and more sophisticated. This research addresses a 
new methodology for the use of A-DInSAR data in landslide analyses at different scales via the integration of 
remote-sensing data with simple geomorphological models and geometric considerations. The methodology is 
tested inside a well documented area in Central-Southern Italy where an advanced dataset consisting of base and 
thematic maps is available.  

Keywords: landslide characterization, A-DInSAR.  

1. Introduction 

Displacement data can be profitably used to characterize both the boundaries and the state of 
activity of slow-moving landslide phenomena. To this aim, the measurements need to be 
efficient in terms of time and budget especially when dealing with analyses over large areas. 
In this regard, the use of advanced satellite techniques, which involve data achieved by 
Synthetic Aperture Radar (SAR) [Gabriel et al. 1989], can turn out to be extremely useful. In 
particular, the differential Advanced SAR interferometry (A-DInSAR) can complement with 
traditional topographic techniques to obtain a comparable accuracy of ground surface 
displacements while being less expensive and time consuming. However, the application of 
A-DInSAR techniques to the analysis and mapping of landslide phenomena is a relatively 
new and still challenging topic and only few successful case studies are discussed in the 
scientific literature [Berardino et al., 2003; Colesanti and Wasowski, 2006; Hilley et al., 
2004; Cotecchia, 2006; Farina et al., 2006, Wasowski et al., 2008; Cascini et al., 2010]. 
The present research is aimed to overcome some of the current difficulties by introducing a 
new methodology for multipass A-DInSAR data interpretation in areas for which a proper 
geomorphological and topographic knowledge is available. 
The methodology [Cascini et al., 2010, 2011] is essentially based on the integration of 
information concerning landslide features and related ground displacements and is tested at 
both medium (i.e. 1:25,000 scale according to Fell et al., 2008) and large scales (i.e. 1:5,000 
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scale, Fell et al., 2008) within a sample area in the territory of National Basin Authority of 
Liri-Garigliano and Volturno (NBA-LGV) rivers (Central-Southern Italy). 

2. Data and Methods 
 
In the present test case thirty-three images (track 308 - frame 2765), acquired over descending 
orbits of the European Remote-sensing (ERS-1, ERS2) satellite systems, spanning the time 
interval from March 1995 until February 2000, have been processed at both low-(pixel 
spacing of 40x40 m) and full-resolution (pixel spacing of 10x10m) [Fornaro et al., 2009a] e 
b).  
Main goals of the analysis are : a) tackling the limit related to the one dimensional projection in 
the Line Of Sight (1D LOS projection) of a deformation that can actually occur in all three dimensions 
[Rocca, 2003; Manzo et al., 2006]; b) correctly addressing the ambiguity of phase measurements 
which implies that it is extremely difficult to detect LOS displacement rates exceeding 8 – 10 cm/yr, 
thus limiting the use of A-DInSAR data only to landslides ranging from extremely to very slow 
phenomena according to the velocity classification of Cruden and Varnes [1996]. 
The selected dataset covers an area belonging to the northern portion of NBA-LGV in 
Central-Southern Italy (Fig. 1) for which both base and thematic maps were available at 
1:25,000 scale. These maps were produced in 2001 within the PSAI project (Piano Stralcio 
per l’Assetto Idrogeologico). 
The test area has an extension of 489 km2 and includes eleven municipalities, belonging to 
two Regions (Lazio and Abruzzo) (Fig. 1). The geological map highlights that the bedrock 
mainly consists of Upper Miocene arenaceous units mantled by Quaternary Age superficial 
deposits, characterized by talus and alluvial fans. Landslide phenomena are widespread all 
over the area (covering around 5% of the whole territory) as it can be noticed in the available 
landslide inventory map at 1:25,000 scale, derived from aerial photographs and surface 
surveys.  

 
Figure 1: Location of the study area 

 
In the study area a total number of 897 slow-moving landslides are mapped [Peduto, 2008; 
Cascini et al., 2009]; according to Varnes [1978] they are classified as: 204 rotational slides, 
238 earth flows, 78 rotational slides-earth flows, 336 creeps, 33 earth flows - creeps, 8 deep-
seated gravitational movements. On the basis of geomorphological criteria, three different 
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states of activity are distinguished for these landslides, defined as follows: “active” (including 
active, reactivated and suspended), “dormant” and “inactive” (relict) phenomena [Cruden and 
Varnes, 1996]. The selected landslide typologies exhibit a significant predominance of 
dormant phenomena (428) on active ones (92).  
The adopted methodology is described in the framework of Figure 2 [Cascini et al., 2011]. In 
particular, the first step of the analysis consists of the generation of the a priori A-DInSAR 
landslide visibility map [Cascini et al., 2009]. This can allow distinguishing in advance 
whether an area is expected to be visible from space-borne SAR sensors, thus driving data-
users through the image dataset selection. 
Once SAR images have been processed, a procedure for 1D-LOS A-DInSAR data projection 
can be implemented to generate the advanced A-DInSAR landslide velocity map (for a 
detailed description see [Cascini et al., 2010] which results from the integration of 
information on the sensor acquisition geometry, the observed scene and the kinematics of the 
landslide phenomenon. According to the extension of the area to be investigated and the 
purposes of the analysis these maps can then be used in analyses either at medium (1:100,000 
to 1:25,000) or large (1:25,000 to 1:5,000) scale.  

 

 
Figure 2: Framework for the use of A-DInSAR data in analyses of slow-moving landslide phenomena at 
different scales [after Cascini et al., 2011]. 
 
Analyses at medium scale via low/full- resolution A-DInSAR data furnish an overview of 
landslide characterization (state of activity) together with elements for the checking\updating 
of Landslide Inventory Maps at 1:25,000 scale [Cascini et al., 2009, 2010]. 
Conversely, analyses at large scale via full- resolution A-DInSAR data provide an insight into 
features and kinematics of single phenomena and help the analysis of the behaviour of A-
DInSAR covered structures [for more details see Cascini et al., 2010, 2011]. 
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3. Results 
 

The first step of the analysis concerned the generation of an advanced low-resolution A-
DInSAR landslide velocity map at 1:25,000 scale in order to analyse rotational slides, earth 
flows and rotational slides-earth flows, whose total amount is 553; 185 (around 33%) of those 
resulted covered by A-DInSAR data.  
The map was generated starting from low-resolution A-DInSAR velocity values, a DEM at 
1:25,000 scale and introducing simplified geomorphological schemes [Cascini et al., 2010], 
which take into account the landslide geometrical features suggested by Cruden and Varnes 
[1996].  
According to these criteria the advanced low-resolution A-DInSAR landslide velocity map 
was generated for the whole study area highlighting that almost 84% of the A-DInSAR 
covered dormant landslides (144) exhibit evidence of no-movement. On the other hand, the 
percentage of active landslides (25) with moving coherent A-DInSAR pixels is about 24%, on 
the average [Cascini et al., 2008]. An example is reported with reference to the municipalities 
of Frosinone and Torrice (Lazio Region) in Figure 3 where very few moving low-resolution 
A-DInSAR pixel are detected over an area of about 3 km x 6 km where dormant phenomena 
prevail.  
Within this area, the directions of movement (see the four red arrows), derived by modeling 
the available 1D LOS A-DInSAR data, seem congruent with the assumption of the 
geomorphological schemes (downward along slope direction). 

 
Figure 3: An example of advanced low-resolution A-DInSAR landslide velocity map for the municipality of 
Frosinone and Torrice (Lazio Region, Italy). 1) Not moving A-DInSAR coherent pixel or on flat areas; 2) A-
DInSAR coherent pixel moving on vertical direction; 3) dormant rotational slide; 4) active rotational slide; 5) 
dormant earth flow; 6) active earth flow; 7) dormant rotational slide–earth flow; 8) active rotational slide–earth 
flow; 9) creep phenomenon [modified after Cascini et al. 2010]. 
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The advanced low-resolution map can be also used for the detection of new landslide 
phenomena by extending the analysis of moving/not moving coherent pixels on those portions 
of the territory mapped as hollows in the geomorphological map at 1:25,000 scale [Cascini et 
al., 2009]. These zones (1263 within the study area) are characterized by geomorphological 
settings quite similar to landslide-affected areas, also exhibiting the same landslide 
predisposing factors. The proposed procedure allowed the detection of 63 hollows where a 
clear evidence of movement was recorded; this can provide elements for a check/update of the 
landslide inventory map that represents the starting point for the landslide risk analysis as 
described in Fell et al. [2008].  
 

 
Figure 4: An example of low-resolution moving A-DInSAR coherent pixel detection within portions of the 
territory mapped as hollows. (1) Hollow with moving A-DInSAR coherent pixel; (2) hollow not covered or with 
not-moving A-DInSAR coherent pixel; (3) dormant rotational slide; (4) active rotational slide; (5) dormant earth 
flow; (6) active earth flow; (7) dormant rotational slide-earth flow; (8) active rotational slide�earth flow; (9) 
creep phenomenon [Cascini et al., 2009]. 
 
Analyses of landslide phenomena at more detailed scale (i.e. 1:5,000) can exploit full-
resolution A-DInSAR data. Accordingly, full-resolution A-DInSAR data were processed via 
tomographic analysis [Fornaro et al., 2009b] with reference to an area of 64 km2 
corresponding to the municipalities of Frosinone and Torrice. 
In this research work full-resolution A-DInSAR data pursued two main goals: the preliminary 
analysis of landslide features (i.e. check of mapped boundaries; detection of ground 
displacement out of mapped areas); an insight into different kinematic behaviour 
characterizing different portions of the same phenomenon. For sake of brevity, hereafter only 
the first issue is discussed with regard to an example in Torrice and Frosinone urban areas; the 
second issue, addressed via the case study of La Consolazione landslide, is described in 
details in Cascini et al. [2010]. 
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Following the flowchart in Figure 2 the advanced full-resolution A-DInSAR landslide 
velocity map was generated at a scale of 1:5,000. In order to check possible changes in 
landslide boundaries, the entire full-resolution coherent pixel dataset was projected including 
pixels out of the mapped landslides and assuming translational movements along the steepest 
slope direction. Examples of the results obtained are shown in Figure 5 where evidences of 
movements both inside and outside the landslide boundaries can be noticed. Particularly, 
special attention is worth being paid to full-resolution A-DInSAR coherent pixels exhibiting 
mean velocity values exceeding 0.3 cm/year within two dormant earth flows (labelled with 
letters A and D) and creep zones (labelled with letters B and C) as well as the areas framed 
with the circle and the square, respectively.  
With reference to the zone framed with the circle, a cross check via the geomorphological 
map shows that the buildings in the area were built on an hollow on which the A-DInSAR 
data show evidences of movement for the period 1995-2000. 

 

Figure5: Overview of advanced full-resolution A-DInSAR landslide velocity map for a portion of the 
municipality of Frosinone (Lazio Region, Italy). 1) Not moving A-DInSAR coherent pixel or on flat areas; 2) not 
projected translational displacement owing to high condition number; 3) dormant rotational slide; 4) active 
rotational slide; 5) dormant earth flow; 6) active earth flow; 7) creep phenomenon [Cascini et al., 2010]. 

The area framed by a rectangle highlights the presence of moving full-resolution A-DInSAR 
coherent pixels in proximity of a landslide classified as active earth flow in the landslide 
inventory map at a scale of 1:25,000. In this case a more detailed analysis [see Cascini et al., 
2010] was possible thanks to the availability of a map of the phenomenon, drawn at 1:5,000 
scale by the NBA-LGV technicians. The superimposition of full-resolution A-DInSAR data 
on this enhanced inventory map points out that the moving coherent pixel falls within the 
portion actually moving and suggests the retrograding movement towards the top of the hill. 
This last example clearly shows how full-resolution A-DInSAR data can be useful in 
addressing investigations on both the state of activity and the spatial evolution of landslide 
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phenomena. In addition, the full-resolution A-DInSAR data reliability must be necessarily 
checked via thematic and topographic maps at large scale (i.e.1:5,000), see Cascini et al., 
[2010]. 
 
4. Discussion and Conclusion 
 
In the last decade the use of remote-sensing data derived from A-DInSAR techniques has 
increasingly grown, even though some problems still arise in the analysis of slow-moving 
landslides. Starting from current limits of A-DInSAR technique to landslide applications, the 
present research work introduces an innovative procedure that allows a significant 
improvement of the common 1D LOS velocity maps.  
The first step of the procedure consists of the generation of the a priori A-DInSAR visibility 
map to forecast the visibility of slopes on the basis of their aspect and inclination, vegetation 
cover and the presence of buildings/infrastructures. The second step allows the development 
of advanced A-DInSAR landslide velocity maps via the joint use of a DEM and simplified 
geomorphological schemes at both 1:25,000 and 1:5,000 scales.  
The methodology is applied in an area, of around 500 km2, which is hilly, vegetated and 
scarcely urbanised. Although the covered phenomena are around 34% of the total, using a 
descending dataset only, the proposed procedure for low/full-resolution A-DInSAR data 
highlights perspectives of application to check/update landslide inventory maps at different 
scale over areas of unprecedented extension.  
In conclusion the results obtained seem particularly appealing also considering that ultimate 
sensors (TerraSAR-X, COSMO/SKYMED, Sentinel, etc) will provide enhanced monitoring 
capability due to a significant increase in the spatial resolution, three times higher data 
acquisition frequency and an increase in the sensitivity to temporal decorrelation via the 
reduction of the wavelength. 
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Abstract 

Differential synthetic aperture radar interferometry (InSAR) provides a method for efficiently mapping ground 
movements over tens of thousands of square kilometers. The European Space Agency’s archive of satellite radar 
scenes, acquired since 1992, provides an invaluable resource when performing an initial assessment of a new 
study area. Experience in northern Norway has shown that there is a very good correlation between ground 
velocities mapped using InSAR and landslide activity mapped in the field. In this case study, we present the 
results of an analysis performed in Troms county, in northern Norway. Images from the ERS-1 and ERS-2 
satellites were processed using the short baselines subset algorithm. Numerous rockslides were identified and 
subsequently examined in the field. The Gamanjunni rockslide is just one example of these. Structures mapped 
in the field agree remarkably well with variations in the surface velocity mapped using InSAR.  

Keywords: rockslide mapping; interferometry, InSAR 

1. Introduction 

Like most remote-sensing techniques, differential synthetic aperture radar interferometry 
(InSAR) facilitates the mapping of large geographic areas within a relatively short time. In the 
case of InSAR, the result is a map of relative surface movements with respect to the position 
of the sensor. In this case study, we present the use of the European Space Agency’s archive 
of radar images to identify rockslides in relatively remote areas of Norway (Figure 1). 
Synthetic Aperture Radar (SAR) is a microwave imaging system. It uses microwaves, which 
can penetrate clouds. By comparing multiple SAR images, we are able to measure changes in 
travel time as a function of the satellite position and time of acquisition. This allows us to 
generate Digital Elevation Models (DEM). Changes not related to topography include those 
due to changes atmosphere and topography between acquisitions.  
If the topography for an area is known, two images can be used to measure deformation 
ranging from centimetres to metres. Smaller deformations, however, are not easy to 
distinguish from atmospheric effects using just two images. If we use many images (15 or 
more), however, we can take advantage of the differences in spatial and temporal correlation 
to distinguish between deformation and atmospheric effects. We can do this if we assume that 
atmospheric effects have a high degree of spatial correlation but are almost random in time, 
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whereas the deformation we are looking for will have much higher temporal correlation 
[Ferretti et al., 2001]. 
Over the last years, several algorithms have been developed to do this type of analysis. In this 
case example, we have used an improved version of the small baselines (SBAS) algorithm 
[Berardino et al., 2002; Lauknes et al., 2011]. 

 

Figure 1: Location of the study area. The Lyngen peninsula is located in Troms county, in Northern Norway. 
This image shows the average intensity of the SAR images used for this study. The red circle shows the location 
of the Gamanjunni rockslide, discussed below. 

2. Data and Methods 

The data used were acquired by the ERS-1 and ERS-2 satellites between 1992 and 1999. All 
(19) snow-free scenes were used. These scenes were used to generate 60 interferograms with 
a maximum perpendicular baseline of 300 m and a maximum temporal separation of four 
years. The ERS satellites have an operating wavelength of 5.66 cm, and the radar looks to the 
right (west) with an angle of approximately 23.5° from the vertical. The radar is only sensitive 
to displacement changes with a component in the radar line-of-sight (LOS) direction. 
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From the 60 interferograms, a common set of pixels was chosen that were above a preset 
coherence threshold in a selected fraction of the interferograms (Figure 2.). Since 
interferometric phase measurements are observed modulo 2π, the interferograms must be 
spatially ‘unwrapped’ to determine absolute phase values. This was done using the SNAPHU 
program [Chen and Zebker, 2001]. After phase unwrapping, all pixels were referenced to a 
selected (assumed stable) reference pixel with high coherence. For each interferogram, an 
orbital phase ramp as well as phase delay due to tropospheric stratification was estimated and 
removed. DEM error, atmospheric phase screen and deformation were then estimated using 
the technique outlined in Lauknes et al., [2011]. 

 

Figure 2: Outline of the processing steps used in the InSAR analysis. The input data consisted of 60 radar scenes 
from the ERS-1 and ERS-2 satellites. A detailed description of the method can be found in Lauknes et al., 2011. 
 
3. Results 

 
3.1 Regional findings 
 
Numerous unstable rock slopes were identified within the study area (Figure 3). Some of 
these were known previously, but many were only confirmed in the field after the InSAR 
analysis was completed. In all cases, there was a good degree of correlation between mapped 
structures in the field and surface velocities measured using the images. The tectonic 
significance of the regional uplift trend is discussed in Osmundsen et al., [2009]. 
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Figure 3: Average line-of-sight velocity between 1992 and 1999 determined using the SBAS method. Red areas 
represent areas which are moving away from the satellite. Since the line-of-sight is only 23º from vertical, these 
can be either slope-parallel movements, vertical movements or something in between. Gamanjunni rockslide is 
highlighted by the red circle. 
 
3.2. Gamanjunni rockslide 
 
One of the unstable rock slopes identified in the study is the Gamanjunni rockslide. The 
rockslide is situated on the eastern flank of the N-S valley of Manndalen. The Gamanjunni 
site lies almost directly on the crest of a regional anticline, with the back-wall on the 
immediate east-dipping limb of the anticline and the active block on the downslope, west-
dipping limb. On top of the bedrock rests an up to one metre thick block field, with individual 
blocks varying in size from a few centimetres up to a few tens of centimetres. 
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There is a remarkable spatial coincidence of the structures observed independently from the 
aerial photo analysis and the detailed pattern of the InSAR data (Figure 4). The spatial extent 
of the InSAR movement area fits very well with the area delimited by Scarp A and Scarp B. 
There is some evidence for segmentation of the sliding block into smaller blocks along 
secondary extensional fractures. A Basal Sliding Plane (BSP) is observed with a 20-30° dip 
towards the valley floor to the west. The BSP is sub-parallel to, and appears to utilise, the 
shallow west-dipping foliation. The presence of fresh talus slopes at the front and sides of the 
block, and particularly in the vicinity of extensional structures within the block, suggests that 
active shearing occurs along this basal plane. 

4. Discussion and Conclusion 
 
Using these bounding-structures of the Gamanjunni rockslide, together with the estimated 
depth to the sliding plane, we estimate an approximate volume for the unstable block of 23 
million m3, making this site one of the larger potential rockslides in Norway. The paucity of 
extensional structures within the block strongly suggests the possibility of a single 
catastrophic failure. A large river runs in the bottom of the valley which could be blocked and 
dammed by a rockslide of this size.  
Gamanjunni is just one of several similar rockslides along the same ridge in the Manndalen 
valley. In addition, numerous unstable rock slopes have been identified in the neighbouring 
slopes, such as the south side of Kåfjord and the west side of Lyngenfjord. One of the 
rockslide along Lyngenfjord, called Nordnes, has been monitored for several years now using 
many ground-based systems due to the hazard it represents [Nordvik et al., 2010]. However, 
the costs involved in similar monitoring of all the unstable slopes identified during this study 
would be prohibitive. New existing and planned satellites have the ability to acquire relatively 
frequent images. By installing artificial corner reflectors (visible also during the winter) and 
acquiring regular SAR images, it should be possible to determine if and when any of these 
landslides needs closer, ground-based monitoring. 
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Figure 4: From Henderson et al., 2009. The upper figure shows a simplified geological interpretation overlain on 
an orthophoto of the Gamanjunni rockslide. The lower figure shows the average line-of-sight velocity between 
1992 and 1999 for the area.  
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3.3. INTERPRETATION OF DIGITAL ELEVATION MODELS  

3.3.1. Data acquisition 
[ITC+CNRS+UNIL] 

Sources for topographic data can be grouped into those freely available to the public and 
datasets which are usually associated with costs. SRTM [Jarvis et al., 2008] and the ASTER 
GDEM [ASTER-GDEM-VALIDATION-TEAM, 2009] are two sources which are available 
without costs, globally and at resolution up to 30 m. For scientific studies and administrative 
hazard zonation an access to the countries topographic maps may furthermore be possible in 
most cases without significant costs. While such datasets provide valuable auxiliary 
information for the interpretation of other data types they are typically too coarse for detailed 
mappings of inventory relevant variables. Higher resolution information is generally 
associated with additional costs which are typically related to the required resolution and the 
areal extent. Among available remote-sensing methods for the acquisition of digital elevation 
models it can be distinguished between stereophotogrammetry, Radar-based models and 
LiDAR derived topographic data. The most traditional source is certainly the construction of 
DSMs with stereophotogrametric image matching. On the one hand large historic archives of 
stereo views are available and on the other hand modern satellites (SPOT, Cartosat-1, ALOS 
and WordlView-1/2) and aerial sensors (e.g.UAV) continue to collect up-to-date datasets. The 
highest resolution of photogrammetric DSM from spaceborne images is at present 2 m [Poli 
et al., 2010  ] and a comparison of different sensors is currently under way [Reinartz et al., 
2010]. Due to enhanced sensors and stereo matching algorithms the results of 
stereophotogrammetric processes (Fig. 5 b-c) are still among the most precise and accurate 
methods to acquire topographic data [Haala et al., 2010]. 

 
Figure 8: a) LiDAR DSM (resolution 25 cm), b) photogrammetric DSM (GSD 8 cm, resolution 25 cm), c) DMC 
DOM (20 cm GSD) [modified from Haala et al., 2010]  
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Figure 9: Left: Intercomparison between interferometric DSM derrived from SRTM (90 m) and TANDEM-X 
(12 m), Source: DLR, Right: Hillshade representiation of a airborne IFSAR DSM (3.4m)  

At latest since the successful SRTM mission, interferometric SAR (IFSAR) has 
proofed it’s capability to yield accurate topographic datasets over wider areas. For European 
territories DSMs derived from airborne IFSAR are available with a ground resolution of 3-4 
m and the TANDEM-X satellite constellation will soon provide a global topographic dataset 
with a resolution of 12 m and a relative vertical accuracy of less < 2 m [Krieger et al., 2007]. 
However, it also has to be considered that the X-Band interferometry cannot penetrate most 
surfaces and ground under vegetation cannot be observed directly. 

LASERs (Light Amplification by Stimulated Emission of Radiation) are active optical 
sensor that emit series of pulses of highly collimated, coherent, monochromatic (optical 
wavelength range), directional and in phase electromagnetic radiation. After first experiences 
in 1965 [Shepherd, 1965] and major improvements in the 1990’s, lasers mounted on airborne 
platforms (airplanes or helicopters), also called Airborne Laser Scanning (ALS), can now 
produce High Resolution Digital Elevation Models (HRDEM) at regional scales [Petrie and 
Toth, 2009]. As a consequence, ALS is now a remarkable technique for topography mapping 
(Figure 10) and is widely used in Geosciences for landslides detection, characterization and 
monitoring. 
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Figure 10: two meters HRDEM of the ski resort of Verbier (Valais, Switzerland) processed from an ALS point 
cloud (MNT-MO © CC-GEO-VS). 

Basically, on an airborne platform, three components are used: 
1. a LiDAR (Light Detection and Ranging) which emits laser pulses and records the 

time of flight (TOF) of the back-scattered pulses; 
2. a set of at least two GNSS antennas (Global Navigation Satellites Systems) which 

record the coordinates of the LiDAR at any time; 
3. an IMU (Initial Measurement Unit) which record the roll, pitch and yaw angles of 

the platform according to three fixed orthogonal axes. 
So, as the LiDAR knows its position, its direction of sight and the TOF of each emitted 

laser pulses, it is possible to reconstruct the surface in 3D, post-processing millions points 
clouds. The resolution is basically function of the altitude, the velocity of the platform and the 
scanning frequency [Shan and Toth, 2009]. Usual ALS point densities are 1-2 point m-2. For 
natural hazard purposes, it is generally more convenient to filter out vegetation and non-
natural structures from point clouds, in order to work on geomorphologic surfaces. Indeed, as 
shown in the following figure, geomorphological features are much more obvious on a 
“cleaned” elevation surface than on a raw surface. 
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Figure 11: Left: Digital Surface Model (DSM), including vegetation canopee. Right: filtered Digital Elevation 
Model (DEM), for the same area. Obviously, morphological features are more visible on the DEM than on the 
DSM. 

To find more information on theoretical considerations of ALS, we recommend the 
SafeLand deliverable 4.1 [Michoud et al., 2010], as well as Shan and Toth [2009] or 
Vosselman and Maas [2010].  

In some European countries Airborne LiDAR datasets are already available with 
national scale, resolution higher than 1 m and vertical accuracies that are typically in the 
range of decimeters. Beside the high resolution the advantage of LiDAR lies especially in the 
possibility to observe the ground also under relatively dense vegetation (Figure 12). If more 
detailed observations and higher accuracies are required terrestrial LiDAR is at present the 
most precise instrument for the acquisition of topographic information (Figure 13) on local 
scale. 

 

Figure 12: A: Landslides in a hillshade representation of a airborne LiDAR DTM [Van Den Eeckhaut et al., 
2007]. B: Visibility of landslide-induced surface cracks in a airborne LiDAR DTM after vegetation filtering 
[Razak et al., 2011b] 
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Figure 13: 3D rasterized model of a rockface with scree deposits generated from terrestrial LiDAR point clouds 
[Abellán et al., 2010] 

3.3.2. Data analysis 

A. Visual interpretation of DEMs and multi-temporal DEMs 
[JRC] 

A detailed overview and relevant references are provided in sections 3.5 and 4.3 of D4.1. For 
identification, mapping, classification and prediction of landslides DEMs are indispensible. 
DEMs and their derivatives have been widely used for landslide hazard mapping at regional 
scale for a long time. However, their use regained popularity since the increasing availability 
of high resolution DEMs (HRDEMs). The latter can be produced through stereo pairing of 
aerial photographs or passive optical imagery or from active radar interferometric techniques 
and terrestrial or airborne laser scans (see section 4.3 of D4.1). The visualization of the 
HRDEMs can be highly improved by using hillshade maps or draping over VHR orthophotos 
(section 4.3.2 of D4.1). For landslide inventory mapping also DEM-derivatives such as slope, 
shaded relief and surface roughness maps are important. The identification of landslides on 
DEM-derivative maps is based on the recognition of landslide characteristics (main scarps, 
reverse slopes, convex landslide foots) and alterations of the drainage system (Case study 7 in 
D4.1). 

Comparison of multitemporal DTMs is typically carried out by a simple subtraction. 
Whereas the subtraction between two epochs cannot provide the overall volume of the 
displaced mass, this difference allows an estimation of the volume of the uplifted and 
subsided parts of the terrain between the two epochs. Hence, this technique is only useful for 
large landslides with considerable vertical change in the topography. While for the past 
mainly photogrammetric elaborated DTMs are used, for the last decade DTMs from other 
sources such as airborne LiDAR scans, or WorldView-1, Quickbird and Ikonos stereopairs 
are available. Rather than being derived from the same data type, the accurate alignment of 
the DTMs through the identification of homologous points on non-moving terrain parts is 
important, and effects of vegetation and changes of vegetation have to be considered. Apart 
from the depth of vertical displacement, also the velocity of the landslide determines whether 
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comparison of multitemporal DTMs is useful, as due to the frequency of aerial surveys this 
method is mostly suitable for slow moving landslides only. 
 

B. Sediment budget analysis and displacement analysis with multi-temporal DEMs 
differencing 

[ITC] 

Height differences between DTMs from at least two different time steps can be measured to 
picture the displaced volumes. While the differencing of the DTMs is a realtively simple 
operation that can be applied to any DTM, results and accuracy of the volume estimates may 
vary considerably among different inputs [Kerle, 2002]. Elevation models derived from 
stereo-photogrammetry typically include heights of the canopy which needs to be considered 
because the vegetation is typically removed during catastrophic slope failures [Martha et al., 
2010c]. Variable accuracies of the input DTMs at different surface textures, slope angles and 
sun angle elevations also needs careful consideration [Martha et al., 2010b; Tsutsui et al., 
2007]. Corrections of vegetation heights are unnecessary if all surface heights correspond to 
real ground points and the inputs are consequently digital terrain models [Dewitte et al., 
2008]. In the DTM difference image of catastrophic slope failures and slow moving landslides 
typically generate zone of depletion and zones of accumulation. Interpreting the extent and 
the spatial arrangement of those zones can provide constrains on the possible failure 
mechanism and complement the volume estimates. 

However, the resolution of the input DTM needs to be chosen in relationship to the 
scale of the process at hand. DTMs generated from new generation sensors such as 
WorldView - 1/2 and Geoeye-1 still needs to proper evaluation and most spaceborne products 
offer only sufficient detail to investigate large scale slope failures. Aerial images offer an 
interesting alternative especially for the reconstruction of historic mass balances, whereas the 
most advanced and accurate topographic models and consequently volume estimates can be 
currently derived from TLS and ALS [Favalli et al., 2010]. 
 

C. Surface change detection from LiDAR point clouds analysis methods 
[CNRS] 

LiDAR technology provides high-resolution point clouds of the topography and, when 
repeated datasets are available, has several applications in terms of deformation and 
displacement monitoring [Abellán et al., 2010; Gordon et al., 2001; Jaboyedoff et al., 2009c; 
Oppikofer et al., 2008; Teza et al., 2007; Travelletti et al., in review; Travelletti et al., 2008]. 
It is mainly used to create accurate and precise Digital Elevation Models (which are 2.5D 
representations of the topography) or virtual 3D scenes of point clouds. The density mainly 
depends on the position of the sensor and of the platform (decimetric to centimetric resolution 
for ALS and centimetric to millimetric resolution for TLS). 

For a multi-temporal analysis of LiDAR DEMs and/or LiDAR point clouds, the 
critical issue is the alignment of the point cloud whose accuracy will determine the range of 
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deformation and displacement that can be monitored [Jaboyedoff et al., 2010; Travelletti et 
al., in review]. Point clouds alignment consists in a registration by a visual identification of 
homologous points and an optimization of the alignment either by the Iterative Closest Points 
(ICP) algorithm [Besl and McKay, 1992] or by the Roto-Translation technique [Teza et al., 
2007]. The choice of the alignment procedure depends on the quality of the point clouds and 
the requested accuracy. Another critical issue is the accurate filtering of the vegetation in 
order to represent the real ground morphology (and thus the texture in the DEMs) at the 
surface.  

In order to compute differences (elevation changes, displacement, and deformation), 
several procedures can be applied on the aligned point clouds. Most of the procedures are 
based on the compilation of either 1) vectors between two points (or areas) or 2) distances 
between two data sets (point to surface comparison) either in a user-defined direction or as 
shortest distance between the two surfaces. This difference calculation allows for the 
computation of volume differences, as is discussed by different authors [Bitelli et al., 2004; 
Chen et al., 2006; Dewitte et al., 2008; Mueller and Loew, 2009]. Monitoring surface 
displacements in rock slopes is simpler than in soil slides because the displacements can be 
considered as rigid body transformations [Monserrat and Crosetto, 2008], and thus the real 
landslide movement can be decomposed as a combination of translations and rotations. In 
order to avoid any hypothesis on the rheology of the displaced material, correlation of slope 
gradient images constructed from the LiDAR DEMs can be applied by measuring 
displacements of characteristic pixels that occur between image acquisitions, using either 
FFT-based or direct cross correlation-based algorithms [Travelletti et al., in press]. With such 
technique, sub-pixel accuracy can be obtained by using advanced statistical techniques. 
 

D. Semi-automatic object- and raster-based landslide mapping using 
morphological features 

[JRC] 

In contrast to the relatively high number of studies that used visual interpretation of DEMs 
and multi-temporal DEMs for extracting landslides from detailed topographic data such as 
LiDAR (section 3.4.2 A) only few studies have attempted to develop computer-aided 
methods. The visual identification of landslides features on remote-sensing images is based 
on the recognition of landslide characteristics and alterations of the drainage system, and 
semi-automated methods try to translate this expert knowledge in an objective landslide 
classification method. 

Previous attempts of automatic landslide identification have been carried out in a 
pixel-based analysis. McKean and Roering [2004] have applied various surface roughness 
filters using LiDAR-derived DEMs to map deep-seated landslide sites, based on the notion 
that landslide surfaces are rougher due to the appearance of cracks, benches and scars. 
Roering et al., 2005 [2005] used slope and curvature maps to distinguish old landslides with 
subdued morphology from steep and dissected terrain and valley floors. Glenn et al. [2006] 
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employed the standard deviation of elevation differences from a hypothetical spline plain, 
semivariograms, and fractal dimensions to characterize the mechanisms of deep-seated slides. 
Using different filter size allowed them to define different landslide activity stages. Also 
Kasai et al. [2009] characterized geomorphic features of deep-seated landslides at various 
stages of evolution and activity. They combined the LiDAR-derived Eigenvalue Ratio filter 
and slope angle, and assessed relationships between the ranges of filter values and actual 
surface features. 

Section 3.4.3 contains a case-study on ongoing research to semi-quantitatively identify 
old vegetated landslides, not detectable from passive optical images, using OOA and LiDAR 
derivatives [Van Den Eeckhaut et al., 2011]. Previous studies have proven the potential of 
OOA and passive optical remote-sensing data (see section 4.8 of D4.1) for semi-automatic 
creation of inventories of active landslides. Yet, DEMs have only been used in the second 
step, the classification. The case-study of [Van Den Eeckhaut et al., 2011] starts from the 
hypothesis that OOA might provide better results than pixel-based methods when using high 
resolution topographical data, because OOA rests upon two interrelated methodological steps: 
(1) segmentation or regionalization of pixels, if necessary on different scales, into meaningful, 
homogeneous objects that reduce the noise inherent in pixel-based analysis [Blaschke, 2010]; 
and (2) rule-based classification incorporating spectral, textural, morphometric and contextual 
landslide features. The case-study goes into more detail compared to van Asselen and 
Seijmonsbergen [2006], which used LiDAR derivatives for both the segmentation and 
classification phase of geomorphological mapping. Their classification included slopes with 
mass movement, but they did not focus on single landslides as this was too difficult.  
 

3.3.3. Innovative case studies 

The following section demonstrates the use of high resolution DEMs via short summaries of 
six recently published or submitted research works carried out within SafeLand or through 
sister projects. 
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Airborne laser scanning of forested landslides characterization: 
terrain model quality and visualization 

Application: Landslide mapping and characterization 
Technique: Airborne LiDAR 
Main reference: Razak, K.A., M.W. Straatsma, C.J. van Westen, J. P. Malet and S. M. de 
Jong (2011): Airborne laser scanning of forested landslides characterization: terrain model 
quality and visualization 
Contributors: ITC (K. A. Razak, M.W. Straatsma, C.J. van Westen), CNRS (J.-P. Malet) 
 
Abstract 
 
Mapping complex landslides under forested terrain requires an appropriate quality of digital terrain models 
(DTMs), which preserve small diagnostic features for landslide classification such as primary and secondary 
scarps, cracks, and displacement structures (flow-type, rigid-type). Optical satellite imagery, aerial photographs 
and synthetic aperture radar images are less effective to create reliable DTMs under tree coverage. Here, we 
utilized a very high density airborne laser scanning (ALS) data, with a point density of 140 points m-2 for 
generating a high quality DTM for mapping landslides in forested terrain in Barcelonnette region, South French 
Alps. We quantitatively evaluated the preservation of morphological features and qualitatively assessed the 
visualization of ALS-derived DTMs. We presented a filter parameterization method suitable for landslide 
mapping and compared it with two default filters from the hierarchical robust interpolation (HRI) and one 
default filter from progressive TIN densification (PTD) method. The results indicate that the vertical accuracy of 
the DTM derived from the landslide filter is about 0.04 m less accurate than that from the PTD filter. However, 
the landslide filter yields a better quality of the image for the recognition of small diagnostic features as depicted 
by expert image interpreters. Several DTM visualization techniques were compared for visual interpretation. The 
openness map visualized in a stereoscopic model reveals more morphologically relevant features for landslide 
mapping than the other filter products. We also analyzed the minimal point density in ALS data for landslide 
mapping and found that a point density of more than 6 points m-2 is considered suitable for a detailed analysis of 
morphological features. This study illustrates the suitability of high density ALS data with an appropriate 
parameterization for the bare-earth extraction used for landslide characterization and identification in forested 
terrain. 
 
Keywords: Airborne laser scanning; Forested landslides; Automatic bare-earth extraction; Landslide filter; 
Landslide visualization; Barcelonnette region 
 
1. Introduction 
 
Over the last few years, Airborne Laser Scanning (ALS) became available and is used to map 
landslide morphology and estimate landslide activity in areas that are partly or completely 
covered by dense vegetation [Sekiguchi and Sato, 2004; Van Den Eeckhaut et al., 2005, 2007; 
Glenn et al., 2006; Schulz, 2007]. The ability of ALS to penetrate the forest canopy and its 
independence of solar incidence angle makes ALS superior to image-based photogrammetric 
techniques for acquiring a high resolution digital terrain model (DTM) in forested terrain 
[Kraus, 2007] and the high spatial resolution of ALS outperforms the use of synthetic 
aperture radar (SAR). The interpretability of landslides depends on the quality of the DTM. 
Reported vertical accuracies of vegetated and sloping terrains vary between 0.20 and 2.00 m 
[Huising and Gomes Pereira, 1998], 0.26 m for deciduous forests (Hodgson and Bresnahan, 
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2004), 0.57 m [Kraus and Pfeifer, 1998], 0.31 m for coniferous forest [Reutebuch et al., 2003] 
and 0.31 m for shrub and conifer trees [Wang and Glenn, 2009]. So far no detailed assessment 
on DTMs has been carried out to reveal the suitability of ALS and derived DTMs to 
accurately map landslide-morphological features.  
Filtering of ground points from the ALS point cloud is an important step in the accurate 
geomorphologic mapping of landslides. Generally, ALS-derived DTMs have been used to 
characterize landslide morphology and activity [McKean and Roering, 2004; Glenn et al., 
2006; Kasai et al., 2009]. Several algorithms have been developed for DTM extraction from 
ALS point clouds [Sithole and Vosselman, 2004]. In spite of the ability to automatically 
classify ground points and non-ground points, complex scenarios such as the preservation of 
discontinuities (steep slopes), vegetation on slopes, low vegetation and influence of outliers 
(multi-path errors or hit off objects) still require further improvement of the filtering 
algorithms [Sithole and Vosselman, 2004] and some manual editing is often carried out by the 
data provider. The selection of the appropriate filtering algorithm depends on the type and 
complexity of the landscape [Sithole and Vosselman, 2004; James et al., 2007] An optimal 
method for landslide inventory mapping is currently not known. Especially, the preservation 
of important landslide characteristics, such as scarps, cracks, rock blocks, deposition lobes, 
ponds, hummocky topography, and back-tilted slope surface, while removing vegetation is a 
challenging task.  
In this study two DTM filters (hierarchical robust interpolation, progressive TIN 
densification) are tested on a very high ALS data with more than 140 points m-2 with respect 
to the preservation of geomorphological features of forested landslides.  
The second part of this study evaluates various visualization methods of an ALS derived 
DTM representing a large complex landslide, whereas different visualization techniques 
discussed in the literature are qualitatively assessed by different image interpretation experts. 
 
2. Study Area 
 
The Bois Noir landslide (Fig. 1) is located on the south-facing slope of the Barcelonnette 
Basin in the South French Alps, 2.5 km to the south-east of Jausiers (Alpes-de-Haute-
Provence, France). The area is characterized by irregular topography with slope gradients 
ranging between 10 and 35° [Thiery et al., 2007] and the site is covered by Pinus Nigra (black 
pine tree) which is the dominant species. Geology at the study area is characterized by a 15-m 
thick top layer of morainic colluvium, underlain by autochtonous Callovo-Oxfordian black 
marls as present in the northern part of Bois Noir landslide [Maquaire et al., 2003]. The 
southern part of Bois Noir is characterized by outcrops of limestone in the summit crest and is 
characterized by steep slopes of up to 70o, with extensive scree slopes. 
The hummocky topography is inherited from the different phases of the Quaternary glaciation 
[Hippolyte and Dumont, 2002]. The Bois Noir slope segment is characterized by a dry and 
mountainous Mediterranean climate with strong inter-annual rainfall variability (annual 
rainfall may vary between 400 and 1400 mm). These predisposing geomorphic and climatic 
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factors explain the development of the slope by rotational or translational shallow landslides 
which usually affect the uppermost two to six meters [Thiery et al., 2007]. 
We focussed on a small and most active part of the 24 ha of the Bois Noir slope segment (Fig. 
1A) to limit data volumes and to optimize the scale of visualisation.  

 

Figure 1: Location of the study area at Bois Noir landslide in the Barcelonnette Basin (South French Alps). A) 
Orthophoto of study area and ALS zone in 2009. B) Map showing validation points measured in different 
geomorphological features and trees over forested and open terrain. C) Photographs of representative landslides 
features in the study area. 
 
3. Methods 
 
3.1. Data collection 
 
The ALS campaign was carried in July 2009, using a helicopter flying about 300 m above the 
ground. In order to increase the point density seven flight lines were flown resulting in 50 
million points. Using only last pulse measurements rsulted in point density of 140 points m-2, 
which is still far above any commercial application of ALS data. 
During a field campaign in June 2009, 332 points were collected using a total station and a 
Leica differential GPS system 1200 with two geodetic base stations. Further details of the 
point acquisition are provided in Razak et al. [2011].  
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3.2. Quantitative assessment of landslide DTM accuracy 
In this study, we evaluated two common filters for bare-earth extraction [Sithole and 
Vosselman, 2004]: hierarchical robust interpolation (HRI) and progressive TIN densification 
(PTD). Both filters execute automatically without manual editing and work on point clouds 
directly without gridding the data.  
 
3.2.1. Parameterization of Hierarchical Robust Interpolation 
Pfeifer et al. [2001] proposed the HRI approach to filter the point cloud on three different 
hierarchical levels. Each level corresponds to an increase in resolution and comprises four 
steps to extract ground points: thin out, filter, interpolate, and sort out/classify. In the thin out 
step, the original data are thinned out to a low density point cloud. A grid is overlaid over the 
point cloud and for each cell, the lowest or most central point is chosen. In the filter step, a 
DTM is determined by applying the method of Kraus and Pfeifer [1998], which works by 
iteratively computing a local average. Weights are based on the residual value relative to the 

DTM in the previous iteration. The weight function gives 
a low weight to points with a large residual and high 
weight to points with a small residual. Fig. 2A shows a 
schematic diagram of a weight function which is 
determined by half of its maximum value at h and the 
weight function is cut off at tolerance, t.  
 
Fig. 2: Parameterization of Hierarchical Robust Interpolation (HRI) 
and Progressive TIN Densification (PTD) method. A) Weight 
function of HRI method, showing the half-weight value (h) and 
tolerance (t) for residual calculation. B) Triangle of identified 
ground points indicates angles (a, b, c) and distance to the plane (d) 
of PTD method. 

We propose an iterative approach based on the HRI method, which we will refer to as the 
landslide filter. This filter is capable of dealing with the complexity of terrain, especially in a 
rugged forested area for landslide mapping. Besides that, we used two predefined 
parameterizations embedded in SCOP++, called as a HRI-default filter and a forest filter in 
this study. The different parametrization schemes of the filters are shown in Table 1. 
 
3.2.2. Parameterization of Progressive TIN Densification  
The PTD method was developed by Axelsson [2000]. PTD is an iterative approach where in 
each iteration, points are added to the existing TIN if they are below predefined thresholds. 
The thresholds are determined on the basis of the angle points (a, b, c) of the TIN facets and 
the distance (d) to the plane (Fig. 2B). The procedure to add candidate points (p) to the TIN is 
done continuously until all points exceed the thresholds. Parameterization of PTD consists of 
the selection of the maximum slope degree of the study area, the lowest points in a large grid, 
the maximum number of iterations for distance and angle to the plane, and threshold for the 
edge length. Since the PTD method is sensitive to below terrain blunders points 0.5 m lower 
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than any neighbouring point within a 5 m radius) were first removed. We set the maximum 
slope angle to 86o, the iteration angle to 10o, and the distance to the plane to 1.5 m. For the 
iteration angle, the edge length was set to less than 5 m in order to avoid adding unnecessary 
points and to reduce the use of memory and computation time. These choices are based on 
point density and terrain characteristics over the study area.   
 
Table 1. Parameterization of weight functions, thinning output and buffer zones for the landslide filter, forest 
filter and HRI-default filter. 

 

 
3.2.3. Quantitative error assessment 
The vertical accuracy of the different DTMs was first determined by computing RMSE (root 
mean square error) between field points and the corresponding DTM points. The effect on the 
spatial representation of the four different DTM filters was assessed by computing the 
differences between the results from the landslide filter and the other filters. The last quality 
aspect evaluated is the density analysis of filtered points. The point density of the ground 
points is computed based on the average number of points within one square meter. 
 
3.3. Qualitative assessment of DTM interpretability 
 
The qualitative assessment of the ALS-derived DTMs produced by the different ALS filtering 
parameterization was carried out in two ways. Firstly, we assessed the interpretability of 
geomorphological features on a hybrid DTM. A hybrid DTM consists of a regular grid, 
intermeshed with break lines, form lines, border lines and spot heights (SCOP++, 2008). Such 
DTMs have been used in many landscape studies, [Hollaus et al., 2006; Szekely et al., 2009]. 
We assessed the interpretability of cracks, scarps, rock blocks, depletion zones and 
accumulation zones. 
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Secondly, we asked three expert interpreters to evaluate the interpretability of the different 
DTMs. The DTMs were provided to the expert image interpreters without informing them on 
the applied filtering methodology. The evaluation was done on the basis of a stereoscopic 
model and shaded relief images. The interpretability of different DTMs was rated based on 
the degree of morphological appearance and a landslide inventory map was created using 
DTM that was rated highest. The image interpretation was done using a screen visualization 
technique with 3D anaglyph glasses. A landslide map indicates the outlines of 
geomorphological units, roads, cracks, drainage network, and landslide activity. 
  
3.3.1. Visualisation in 2D 
The interpretability of the images depends on the DTM visualization techniques. Here we 
compare four different visualization techniques based on a gridded DTM with 0.25 m cell size, 
namely shaded relief map [Horn, 1981], color composite map [Smith and Clark, 2005], 
openness map [Yokoyama et al., 2002], and red relief image [Chiba et al., 2008].  
 
3.3.2. Visualization in 3D 
Two types of 3D visualization were also produced and evaluated. Firstly, Static stereocopic 
models [Smith and Clark, 2005] were created using the shaded relief, the openness map and 
the DTM. Secondly, a dynamic 3D point cloud visualization [Vosselman and Klein, 2010] 
was used. 
 
3.4. Analysis of ALS point density for landslide recognition 
 
The ALS data enabled the acquisition of extremely dense point clouds over the landslide area.  
To assess the influence of the point density on the interpretability of the ALS data eight 
artificially thinned datasets were produced by grouping points in local neighborhoods of 0.25, 
1, 3, 5, 7, 9, 11 and 13 m. The eight datasets had average point density in between 1.69 and 
27.20 points m-2 and were used to create a 1 m resolution DTM by using a natural neighbour 
interpolation technique. The original DTM and the eight thinned ALS-derived DTMs were 
given to expert-image interpreters for suitability assessment. Diagnostic morphological 
features have been referred for this assessment in order to examine the suitability of ALS 
point density for landslide recognition. This assessment is informative for the users who want 
to order and use the ALS data for mapping landslides beneath vegetation.  
 
3. Results 

 
3.1. Quantitative assessment 

 
The vertical accuracy of the four produced DTMs varies between 0.28 and 0.87 m compared 
to the field data and depends on the different morphological features and the applied filters 
(Table 2). For all morphological features the PTD filter outperforms the filters based on HRI 
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with RMSE being lower than that for the best HRI parameterization by 0.02 to 0.04 m. The 
landslide filter shows the best results of the different HRI parameterizations. The errors for 
cracks and scarps are lower when no vegetation is present, but for rock blocks RMSE values 
are comparable between the open and forested terrain. The original point density of last pulse 
data was 140 points m-2.  
The point density of the ground points varies between 22 points m-2 and 76 points m-2 
depending on the filters (Table 3). The point density of the filtered data using 
parameterization of the landslide filter is about 52 points m-2, and 64% of the point cloud was 
filtered out during the automatic filtering process. In contrast, point density analysis of the 
PTD method shows that the ALS points were reduced by 85% after the filtering process. 
The differences between the DTMs generated by the landslide filter and the other filters were 
computed to evaluate the spatial effect of the different filters (Fig. 3). The major height 
difference between the landslide and PTD filters mostly occurs over the zone of depletion as 
depicted in the two subset area in Fig. 3A. It shows that the landslide filter preserves small 
scale morphological features on such areas better than the PTD filter. 
 
 Table 2: Quantitative assessment of the vertical accuracy of morphological landslide features with different 
filter parameterization. Units are in meters. 

  
Table 3: Point density of ALS ground points extracted using four different filters. 
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Fig. 3: Height differences between terrain models 
generated from the landslide filter- and A) PTD filter, B) 
forest filter and C) HRI-default filter. Positive values 
indicate that the DTM from the landslide filter is higher 
than the one from the other filter. 
 
 

3.1. Qualitative assessment of ALS-derived DTMs 
 

The qualitative analysis on the generated DTMs by different filtering parameter settings was 
carried out based on shaded relief images of the hybrid DTM model as shown in Fig. 4. Fig. 
4A presents an area with a number of shallow cracks in the terrain. Each of the filters is 
capable of identifying the cracks although the HRI-default filter and the forest filter still show 
some vegetation that was not properly filtered out. Fig. 4B indicates that the landslide and 
PTD filters are slightly better in eliminating trees compared to the other two filters. The 
accumulation zones in the complex landslide can be recognized on each of the filter products. 
The displaced material and the disrupted road are seen on the subset images (Fig. 4C). In Fig. 
4D, the landslide filter shows slightly better results than the other filters for an escarpment 
area. However, as can be seen in Fig. 4E, the trade-off for the good performance is that both 
the landslide and PTD filters are worse for detecting isolated rock blocks in the area. The 
PTD filter also shows a smoothening effect due to insufficient ground points over the tested 
area. 
 
4.3. Expert interpretation of DTMs 
 
The three experts on image interpretation that evaluated the results from the various filters 
agree that the ALS-derived image generated using the landslide filter was the best for 
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landslide interpretation. The PTD-derived DTM shows less information over the deposition 
and accumulation zones, whereas, the forest and HRI-default filters do not completely filter 
out the trees.  

 
Figure 4. Examples of the representation of the shaded relief images from hybrid DTM models from the four 
filters for different landslide features. See text for explanation. 
 
For the experts it was generally possible to identify several landslide specific features, to 
determine the landslide type and to evaluate the relative age of different features [see Razak et 
al. 2011 for further details]. 
A complete geomorphological interpretation of the sample area is presented in Fig. 5. One of 
the questions that remained after interpreting the images is whether a number of ridge features 
(F and G in Fig. 4) have a structural geological control (for instance showing the bedding or 
the main local discontinuity of the underlying rocks) or are related to older landslide features. 
Given the importance of landslides in the area and the relatively large depth of the landslide 
features, it is more likely that these ridges are related to larger scale instability that can only 
be interpreted well when looking at the image of the entire Bois Noir landslide slope segment. 
Also the relationship between the most recent landslide activity and larger scale instability 
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features (H in Fig. 4) should be further investigated. It appears that the recent landslide near H 
is actually occurring in a landslide block that is located directly upslope. The line of 
reactivation (I in Fig. 4) seems to be related to an older landslide mass coming from upslope, 
as well as the large glacier-like flow structure (J in Fig. 4). The area between H and J is 
considered as a large flow accumulation which has had several stages of reactivation.  
The landslide inventory map (Fig. 6) is prepared by the expert interpreters. The map combines 
the relative age of the landslides with morphological features and the landslide types. The 
areas indicated as “non-landslide area” are the side slopes and ridges between the landslide 
masses. 
 
4.4. Visualization methods 
 
The different 2D visualizations of the study area are presented in Fig. 6. The openness image 
was recognized by the image interpreters to be the most appropriate for landslide visualization. 
Based on the qualitative assessment carried out on monoscopic images by expert image 
interpreters, many more macro- and micro-morphological features can be found on the 
openness map compared to the shaded relief map. The red relief image has similar 
interpretability as the openness map, but the image interpreters found the overall red colour to 
be disturbing in the image interpretation process.  
A comparison of the 3D stereoscopic visualizations of the non-filtered and filtered datasets 
clearly demonstrated the effectiveness of the filter to highlight the landslide morphology are 
hidden beneath dense vegetation, whereas a direct visualization of the 3D point cloud 
representation was found to be less useful [see Razak et al. 2011 for further details]. 

 
Figure 5: Geomorphological map with classification of landslides created by the expert image interpreters. 
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Figure 6: Illustrations of the various visualization methods used for landslide interpretation. A) Shaded relief 
map. B) Color composite map. C) Openness map. D) Red relief image map. 
 
4.5. ALS point density on landslide recognition 
The thinned out datasets ranged from a point density of 1.69 to 27.20 points m-2. Fig. 7 shows 
a detail of the Bois Noir area, visualized as openness images. The experts all agreed that the 
thinned dataset could be used to recognize the major geomorphological indicators of landslide 
activity. However, in order to differentiate the minor relief, recognize individual landform and 
properly assess the landslide activity, point densities at level 1–3 are required. 

 
  
 
 
 
 
 
 
 
Fig. 7: Three examples of an openness 
map made from different point 
densities. A) Original dataset. B) 
Thinned level 3. C) Thinned level 8 

 
5. Discussion and conclusions 

 
In this study, we evaluated absolute accuracy of an ALS-derived DTMs and its suitability of 
various types for mapping landslides and for identifying morphological features of landslides. 
The vertical accuracy of the DTM varied between 0.28 and 0.36 m for the PTD filter. The 
accuracy depends on the types of geomorphological features. Our results are an improvement 
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in accuracy compared to the previous studies that reported 0.57 m [Kraus and Pfeifer, 1998] 
and 0.46 m [Hodgson et al., 2003] vertical error over forested area. Reutebuch et al., [2003] 
and Wang and Glenn [2009] reported similar results for sloping forested terrain. The PTD 
filter yielded slightly lower RMSE than the landslide filter: about 0.28 and 0.33 m for 
morphological preservation and elimination of the trees, respectively. However, the landslide 
filter shows a better visualization for landslide recognition as depicted by expert image 
interpreters. 
The ALS-derived DTM offers a significant improvement for landslide recognition and 
classification in forested terrain, as compared to optical images. Small morphological features, 
such as cracks, lateral ridges, pressure ridges and step wise morphology are clearly 
recognizable and gives the image interpreter unprecedented detail. Also the type of landslide 
is easily recognized from the detailed DTM. The trade-off between the four different filters is 
that trees were properly filtered out in the landslide and PTD filters, but rock blocks and the 
edges of incised channels are also filtered out. The HRI-default and forest filters maintained 
more of the trees, rock and channel edges. This trade-off is not shown in the accuracy 
assessment, but only showed up while interpreting the gridded DTM. This suggests that the 
HRI method with landslide filter parameterization would be a good method for DTM 
extraction of forested landslides, but that a separate filter should be applied when there is an 
interest in rock blocks and step edges. 
The assessment of landslide activity was more difficult using just the DTM. This could be 
done much better if two ALS datasets were available from two different periods. Vegetation 
characteristics are important indicators of activity and these are normally obtained from aerial 
images. However, also with a high density ALS data the distribution pattern of irregular trees 
can be a good indicator for assessing landslide activity. The shape of the tree stem and the 
orientation of the tree may also be influenced by landslides. Back-tilting of trees indicate a 
rotational slide, whereas bended stems indicate slow motion of the top soil. These topics are 
currently being investigated. 
While the RMSE values differed little between the filters, the method of visualisation had a 
large effect on the interpretability of the landslide. Stereoscopic model was used to visualize 
the landslides. The 3D view of the landscape gives a much stronger impression of the 
landscape dynamics than any of the monoscopic images. The interpretability of the 3D point 
cloud visualization was also less attractive than the stereo image due to the varying point 
densities across the area. For vegetation assessment the raw point cloud would be superior as 
at such a high point density the shape of the tree is clearly recognizable. The openness image 
showed most of the details in the area. It has a more natural view than the composite image 
and has the added advantage that the openness can be combined in a stereoscopic view as it is 
monochromatic. Shaded relief images proved less attractive due to the dependence on solar 
angle and the loss of detail in the end result. 
The required point density for landslide interpretation depends on the purpose of the study. 
Gross morphological features of landslides are easily distinguished at a point density of 1.69 
points m-2. Detailed analysis of morphological features requires a point density more than 
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5.69 points m-2. However for vegetation analysis, a very high density ALS data are preferable 
to enable detailed characterization of the shape of tree stems and branches [Bucksch and 
Lindenbergh, 2008]. 
This study has shown the quality of an ALS-derived DTM for landslides mapping under a 
dense forest canopy. The generation of a detailed landslide inventory in forested terrain is 
considered important for landslide hazard assessment. This method should also be suitable in 
tropical areas where the re-vegetation of landslides proceeds rapidly. Furthermore, the 
vegetation characteristics, particularly on irregular trees extracted from high density ALS data 
could be used to assess the landslide activity beneath densely vegetated area. Follow up work 
is planned for landslides occurring in a forested tropical area with a case study in Malaysia. 
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Application of differential ALS for landslide inventory mapping 
in forested areas: The test site of Gschliefgraben 

Application: Landslide inventory mapping 
Technique: Differencing of airborne LiDAR DEMs 
Main references: unpublished material 
Contributors: GSA (I. Baron, R. Supper) 

Abstract 

This study demonstrates the application of multi-temporal airborne laser scans (ALS) for the monitoring of a 
highly active landslide and related remedial works. ALS surface models of the Gschliefgraben landslide were 
acquired for five different time steps between April 2007 and September 2009. Derived terrain models and high 
resolution aerial photographs were interpreted in combination with differential surface models for a detailed 
tracking of the vertical displacement and the general evolution of stable and unstable areas. ALS is shown to be 
and efficient tool for the investigation of landslides, especially in forested and inaccessible areas. A detailed 
geomorphic analysis of the terrain models enables to recognize individual slope failures and their deposits and to 
distinguish the active slides and earthflows from inactive areas. 

Keywords: OOA, disaster support, feature extraction, K-means cluster analysis, segmentation, India.  

1. Introduction 

The Gschliefgraben site is one of the most prominent and extensively studied slope failures in 
Central Europe. It comprises a large complex of geologically controlled slides, earth flows, 
topples, rockfalls and deep-seated gravitational deformations in the Gschliefgraben valley and 
along the slopes of the Northern Calcareous Alps. In late November 2007, an earth flow of 
about 3.8 million m3 of colluvial mass was reactivated in the central and western parts of the 
valley. The displacement velocity was up to 4.7 m/day at the beginning. Consequently, in 
frame of the first emergency measures, 55 building had to be evacuated. Recently, the 
Gschliefgraben landslide has been a test site of the European FP7 project SafeLand where 
new techniques have been tested for rapid mapping monitoring and effective early warning, 
consisting of, e.g., airborne and ground-based geophysical surveys and the GEOMON4D 
(continuous geoelectrics) and DMS (automatic inclinometer) monitoring systems.  
Landslide inventory map was a basic input for the interpretations of geophysical data. Due to 
large dimensions of the area, dense forest and complexity of the mass movement phenomena, 
the landslide inventory was based on analysis of high resolution digital terrain models from 
(DTM) differential airborne laser scans (ALS) and orthophotographs. 
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Fig. 1:  General setting of the Gschliefgraben site: A) Position within Austria, B) Airborne photo of the 
Gschliefgraben valley and Mt. Traunstein from the west (Photo by: R. Supper, 2009).  

2. Geological and Geomorphic settings 
 
The area of Gschliefgraben is a 2.85 km long and 0.85 km wide valley along the foot of the 
Northern Calcareous Alps (Fig. 1) south of the town of Gmunden. The front of the Northern 
Calcareous Alps there forms a steep cuesta with the summit at Mt. Traunstein (1,691 m a.s.l.). 
The valley is divided into small sub-parallel catchments; its topography is strongly controlled 
by complicated tectonics and a very complex lithology, as well as by mass wasting that has 
been active here since the end of the last glacial period. 
The surveyed area of Gschliefgraben covered three main geological units with completely 
different lithology and geological structure, i.e.: (i) Northern Calcareous Alps and the 
“Marginal Nappe” (NCA), (ii) Ultrahelveticum (UHV) and (iii) the Rhenodanubian Flysch 
Zone (RFZ).  
The NCA unit (Triassic-Cretaceous age) is generally composed of densely fractured, 
diversely stratified, steeply dipping and frequently faulted competent brittle rock. Dolomite 
and Limestone are the most abundant rock types. The substrate is highly permeable and the 
joints often have a character of opened cracks. Generally this unit shows the highest electrical 
resistivity and the lowest content of radioactive elements. 
The UHV unit (Cretaceous-Lower Tertiary age) comprises tectonically strongly deformed 
variegated marl, claystone, nummulitic limestone, sandstone, arcose etc. This unit is the most 
incompetent one in the study area. The material contains a relatively high fraction of swelling 



D4.3 Final version 
Creation and updating of landslide inventory maps, landslide deformation maps                      Date:    2011-09-05 
and hazard maps as input for QRA using remote-sensing technology 
 

 
 
Grant Agreement No.: 226479 Page 130 of 302 
SafeLand - FP7 

clay minerals. Moreover the soft rocks are intensively tectonically fragmented. The rocks of 
the UHV are locally quite permeable (fractured sandstone, limestone etc.), however 
impermeable zones prevail. Tectonic joints use to be filled with secondary or tectonic clay. 
Due to these facts, this zone shows a relatively low resistivity, and a high U, K and Th 
content.  
The RFZ (Cretaceous age) is built up mostly with slate, shale, cemented marl and sandstone 
of different thickness. The alteration of competent vs. incompetent and permeable vs. 
impermeable rocks exhibit high local contrast resulting in a distinct local contrast of 
resistivity and U, K, and Th content.  
The main mass wasting processes are represented by sliding and flowing in the central part, 
which is built up mostly of the UHV unit. The UHV emerge here in a form of the tectonic 
window between the RFZ and the NCA. On the other hand, falling, toppling, and spreading 
are the most characteristic types of mass movement in the eastern and southern marginal areas 
of the Gschliefgraben valley along NCA, where hard rock dominates (dolomite, limestone, 
cemented Pleistocene breccia). At some places, great portions of the NCA and the below 
situated RFZ and UHV units are subject to Deep-seated Gravitational Deformations in a 
rather initial evolution stage. 
 
3. Data and Methods 
 
A set of 5 high-resolution Airborne Laser Scan (ALS) scenes, which were taken at different 
times in April 2007, January, February, March and September 2008 (Tab. 1), represented the 
ground surface topography of Gschliefgraben just before, during, and after the major recent 
landslide event of winter 2007/08.  
 
Table 1: Parameters of the ALS campaigns in the site of Gschliefgraben 

Date Ordering 
party Company Sensor Resolution 

[mm] 

Flight 
Height 
[m] 

Processing by 

2007-04-
05 

GeoL Topscan ALTM 2050, 3100 ~20 1000 Topscan 

2008-01-
03 

WLV 
Diamond Airborne 
sensing  

Riegl LMS – Q 
560 

20 650 
Area-Vermessung ZT-
GmbH 

2008-02-
11 

WLV 
Diamond Airborne 
sensing  

Riegl LMS – Q 
561 

20 650 
Area-Vermessung ZT-
GmbH 

2008-04-
28 

GeoL Topscan ALTM 3100 ~20 1000 Topscan 

2008-09-
05 

WLV 
Diamond Airborne 
sensing  

Riegl LMS – Q 
561 

20 650 
Area-Vermessung ZT-
GmbH 

Note: WLV – Austrian Service for Torrent and Avalanche Control, GeoL – Abteilung Geoinformation und 
Liegenschaften, Upper Austria 
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Slope gradient maps in inverted greyscale (“pseudo-hillshade”), derived from the ALS Digital 
Terrain Model (DTM) were applied for visual inspection of the area. Such slope-gradient 
maps have a much better and more comprehensive performance of the ground topography 
than the classical hillshade maps representing only one illumination azimuth (Fig. 2). 
Although the vertical orientation of individual slopes on such a map could be difficult to be 
determined, the advantages of its expressivity prevailed. This small disadvantage was 
eliminated by applying contour lines. The recent activity state of individual slope failures 
(since 2000) was assessed by analysing bare surfaces on orthophotos from 2000 (Fig. 3, 
application GoogleEarth) and 2008, by analysing differential ALS DTM in ArcGIS software, 
and by comparing individual “pseudo-hillshades”. The ALS analysis was complemented with 
field inspections and field geomorphic, structural and engineering-geological mapping. 
 

 
Fig. 2: Comparison of hillshade DTM with different azimuths of illumination (A-C), and the slope-gradient map 
in inverted greyscale, the “pseudo-hillshade” (D). Each of the frames covers the same area 512 m wide. 

4. Results 

The detailed geomorphic analysis of the ALS DTMs and orthophotos enabled (i) recognizing 
individual slope failures and their deposits and (ii) distinguishing the active slides and 
earthflows from the dormant (inactive) and old ones (Fig. 4, Fig. 5). These observations were 
compiled in a form of the landslide inventory map (Fig. 7). In total, the study area was 
affected by morphologically expressive mass movements at more than 50 % (Tab. 2). The 
mass-movement phenomena in the area include different types of landslides at different 
volumes, evolutionary stages and activity level, forming a complicated complex. Due to the 
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limited time available, limited scale and complexity of slope failures, the inventory could only 
deal with a rough classification. Shallow and deep-seated slides (slumps), their transitions to 
earthflows, earthflows alone, fallen boulders or sagged slopes and toppled rock towers were 
the most abundant landslide types. At relatively large portion of the valley, individual bodies 
of dormant (inactive) rather small scale earthflows and slumps were not distinguishable from 
each other. Thus they were grouped together as the category “5” (Fig. 7). The active slides 
and earthflows (active between 2000 and 2008) were distinguished well and they had affected 
about 5 % of the study area (Tab. 2, Fig 7).  

 

Fig. 3: The activity of the earthflow complex between 2000 and 2008 was assessed based on the identification of 
bare surfaces on set of orthophotos. The orthophotos are superimposed on the ALS pseudo-hillshade. 

Also the major recent landslide event in winter 2007/08 and subsequent remedial works were 
well documented by the differential ALS. The main recent earthflow mobilized older mass-
movement deposit in the central and lower western part of the Gschliefgraben valley. Distinct 
subsidence in the upper earthflow portion, as well as the uplift of about 14 m in the 
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accumulation zone was identified (Fig. 5A). The remedial works comprised of distinct material 
removal from the active earthflow, managed by the Austrian Service for Torrent and 
Avalanche Control Survey (WLV Austria) in spring and summer 2008 (Fig. 5B). 

 

Fig. 4: A more-detailed activity assessment of landslides was based on differential ALS, which had the best 
expressivity, as evidenced by comparison of A) two separate ALS pseudo-hillshades taken in different time, B) 
differential ALS model and the orthophoto, and C) pseudo-hillshade and superimposed differential ALS model. 
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Fig. 5: Two differential ALS scenes highlight mass transport due to (A) the major recent landslide event in 
winter 2007/08 and (B) latter remedial works comprising of distinct material removal from the active earthflow 
(below). The presented individual ALS surveys took place in April 2007, February 2008 and September 2008. 

 

Table 2: Review of the spatial extent of different landslide types vs. total area. 

Index Type Area [km2] Area [%] 
0 Stable area 2,17 48,69 
1 Active landslides 0,01 0,30 
2 Active earthflows 0,21 4,77 
3, 4, 5 Inactive landslides and earthflows 1,20 27,05 
6 Old landslide 0,85 19,18 

 

Total: 4,45 100,00 
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Fig. 6: Landslide inventory map of the area of Gschliefgraben. Slope failures comprise more than 50 % of the 
area, even the Deep-seated Gravitational Deformations (blue contours) were not included in the summary. The 
map served as an input for interpreting the airborne geophysical data. 
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5. Conclusion 

The results proved high efficiency of ALS derived detailed digital terrain models in 
determining landslide phenomena, even in forested and inaccessible areas. The detailed 
geomorphic analysis of the ALS DTMs and different time-lapse orthophotos from the 
Gschliefgraben site enabled us to recognize individual slope failures and their deposits and to 
distinguish the active slides and earthflows from the dormant (inactive) and old ones. Those 
results were compiled in form of the landslide inventory map. This map then served as an 
essential base for interpreting the airborne geophysical data. 
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Airborne LiDAR for detailed mapping of landslide features under 
sparse vegetation coverage: the Villerville-Cricqueboeuf landslide 

 
Application: Landslide mapping 
Technique: Airborne LiDAR 
Main references: Lissak, C., O. Maquaire and J.-P. Malet (in review): Characterization of the 
complex morpho-structure of a rotational landslide by combining airborne and ground-based 
methods.  
Contributors: CNRS (O. Maquaire, C. Lissak, J.-P. Malet)  
 
Abstract 
 
The purpose of this work is to present a methodology based on the combination of high-resolution ALS data, 
field surveys and geometrical modeling to propose a detailed geomorphological map of the Villerville coastal 
landslide, which is further used for hazard assessment. The survey has been conducted in April 2010, and 
consisted in detailed field mapping, filtering of the original ALS point clouds datasets to underline the ground-
based morphology hidden by the vegetation, combination of all the information in a morphodynamic map.  
The methodology is presented by illustrating the complex morphology of the landslide to explain the features 
important to delineate for the hazard assessment, and describe the limits of the method. 
 
Keywords: ALS data, field geomorphological mapping, vegetation filtering, morphodynamic map 
 
1. Introduction 

 
Mapping complex landslides under vegetated terrain requires an appropriate quality of digital 
terrain models (DTMs), which preserve small-size features for landslide classification such as 
primary and secondary scarps, grabens, depletion zones, and displacement structures [Kraus 
& Pfeifer, 1998; Sekiguchi & Sato, 2004]. Optical satellite imagery and aerial photographs are 
less effective to create reliable DTMs under vegetation coverage [Nichol et al., 2006; Razak et 
al., 2011]. 
This work presents a simple method to map detailed features by combining extensive field 
surveys and the use of a very high density airborne laser scanning (ALS) data, with a point 
density of ca. 60 points/m2 for generating a high quality DTM. The method has been 
developed for the coastal landslides of Villerville-Cricqueboeuf at which some areas are 
inaccessible because of the dense coverage of bushes. 
 
2. Data and Methods 
 
2.1. History of development of the landslide and objective of the mapping 
 
In Normandy, along the Calvados coast, 50 km of cliffs are partly and periodically affected by 
landslides for several centuries. On the eastern side, the 12 km long Pays d'Auge section 
between Trouville-sur-Mer and Honfleur, has been particularly affected [Maquaire, 2000]. 
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Two spectacular landslides are investigated: the "Fosses du Macre" and the "Cirque des 
Graves" landslides near the municipality of Villerville-Cricqueboeuf (Fig. 1). 
On 10-11 January 1982, a major landslide completely or partially destroyed thirty houses and 
damaged the road in several places (subsidence of ca. 10 cm). Deformations of the slope 
consisted in subsidence grabens divided by subvertical scarps varying from some tens of 
centimetres to over one or two meters. At the top, the crown of the landslide consists of a 3 m 
high scarp. The disturbances at the Cirque des Graves were much greater than at the ‘Fosses 
du Macre'. After the rapid acceleration phase, the deceleration of the movements lasted about 
two weeks. Three reactivations have been observed since the first failure: 
 

· during the night of the 12/13 February 1988, the crisis caused several damage, and 
extended the main scarp laterally as well as uphill and downhill. A rise in the beach 
dislodged the jetty and the breakwaters. The major movements occurred principally at 
the Fosses du Macre. 

· at the end of January or beginning of February 1995 (the precise date of onset is 
unknown), major displacements occurred. This crisis caused a recession of the 
landslide crown. Again, the major movements principally occurred at the Fosses du 
Macre. 

· on 23-24 March 2001, after several weeks of warning signs such as the opening of 
cracks in two houses, a recession and a subsidence of the main scarp occurred. Due to 
the recession, several houses are now located very close to the main scarp and are 
menaced at short time. Deformations of the rock platform were observed as for the 
February 1988 landslide and jetty and breakwaters were dislodged. Again, the major 
movements principally occurred at the Fosses du Macre. At the Cirque des Graves, 
subsidences are also observed on the road. 

 
The objective of the work is to produce a detailed geomorphological map of the landslide by 
explicitly mapping all relevant morphological features testifying of landslide movement (such 
as scarps, grabens, depletion zones, counter slopes, undulating areas) as a first step for a 
further geometrical modeling of the landslide sub-surface and a qualitative assessment of the 
hazard. 
 



D4.3 Final version 
Creation and updating of landslide inventory maps, landslide deformation maps                      Date:    2011-09-05 
and hazard maps as input for QRA using remote-sensing technology 
 

 
 
Grant Agreement No.: 226479 Page 139 of 302 
SafeLand - FP7 

 
Figure 1: Morphology and ortho-photographs of the Villerville-Cricqueboeuf landslides in 2010 (Left: Fosses du 
Macre landslide; Right; Cirque des Graves landslide). 
 
2.2. Data acquisition and processing methods 
 
2.2.1 Acquisition of Airborne Laser Scanning (ALS) data 
The ALS campaign was carried in April 2010 at a period of relatively low vegetation 
coverage (absence of leaf on the trees, presence of bushes), using a helicopter flying about 
300 m above the ground. An airborne hand-held laser scanning system provided by the 
Helimap company was used. This system has been developed specifically for the mapping 
over complex areas [Vallet and Skaloud, 2004]. A RIEGL VQ-480 laser scanner with a pulse 
repetition rate of up to 300 kHz was used to record full waveform laser data. Positioning was 
done using a Topcon Legacy GGD capable of tracking GPS and GLONASS positioning 
satellites. The orientation of the aircraft was determined using the iMAR FSAS inertial 
measurement unit. In order to increase the point density seven flight lines were flown 
resulting in 100 million points. We used last pulse data that amounted to 45 million points 
with a mean point density of 60 points.m-2on average, which is still far above any commercial 
application of ALS data. 
 
2.2.2 Vegetation filtering of ALS datasets 
The TLS datasets were processed and analyzed using the Scop++ software [Pfeifer et al., 
2001; SCOP++, 2008]. Vegetation filtering was carried out by using the hierarchical 
approach (HRI Hierarchical Robust Interpolation) originally proposed by Pfeifer et al. [2001]. 
The HRI method has the capability to automatically extract points belonging to the ground 
surface and classify the non-ground points into several classes such as buildings, vegetation 
and low points [Pfeifer et al., 2009]. A detailed description of the approach and its evaluation 
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for landslide mapping can be found in Razak et al. [2011]. In this study, the mesh size for the 
filtering was fixed at 0.30 m and the minimum height at 0.15 m. 
 
2.2.3 Vertical accuracy of the DTM 
The vertical accuracy of the DTM (interpolated with an Inverse Distance Weighted function) 
has been first determined by computing the RMSE (Root Mean Square Error) between field 
points (measured by dGPS or tacheometry) and the DTM. RMSE was calculated for forested 
and open terrain.  
 

 
Figure 2: Comparison of the profile 2 between interpolation of GPS and LiDAR survey. 
 
In open terrains, the average difference in Z is of 0.04 m with a standard deviation of 0.01 m. 
In forested terrain, the comparison was carried out by the comparison of multiple profiles 
along the slope because of the important filtering. Several profiles were acquired by total 
stations measurements in the field (Fig. 2) and compared to extracted profiles from the 
LiDAR DTM (Fig. 7): on these profiles, the average difference in Z is of 0.41 m with a 
standard deviation of 0.12 m. 
 
3. Results 

 
3.1. Identification and mapping of the main morphological features 
 
A first geomorphological map was produced from field surveys (observations and positioning 
of significant points or topographical profiles by DGPS, etc...) and analysis of various 
existing documents [Flageollet & Helluin, 1984; 1987], postcards and ancient aerial oblique 
photographs, etc… The morphological mapping has been undertaken by extracting relevant 
information from an ortho-photograph of 2006 and a topographical map of 1976 (1/2000). 
The digitalization of contour lines (equidistance 1m) has been used to construct a DEM using 
an Inverse Distance Weighted (IDW) interpolation method. 
The particular and complex morphology of the Villerville-Cricqueboeuf landslides consists in 
a succession of scarps and benches with counter slopes. The legend of the final map includes 
the following morphological key information relevant for hazard assessment. The main 
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morphological features (Table 1) have been recognized in the field at some sub-areas within 
the landslide body. This field surveys allow to locate precisely the minor forms (not 
identifiable on the documents) such as tension cracks, open fractures with or without 
difference of level, minors scarps emerged after the last reactivation or non-visible on the 
orthophotograph due to vegetation cover. 
 
3.2. Methodology for morphological mapping with the use of ALS data 
 
The proposed methodology consists in successive steps: 

• Qualification of the Digital Elevation Model (DEM) derived from LiDAR data 
interpolation; to define the altimetric and planimetric accuracy, 

• Production of an hillshade map to visualize a pseudo relief map (with several 
illumination angles) and a slope orientation map, 

• Extraction of the drainage network, 
• Interpretation of the documents to map landslide features, with a digitization in a GIS. 

 
Table 1: Landslide features to be extracted from the ALS point clouds. 
Landslide feature Photographs Legend 
• Scarps 
This feature is sub 
divided into 3 classes 
(major, secondary and 
minor scarps) 
 

  
• Craks and fissures 
This feature is defined 
as the main opened 
cracks observed with or 
without any difference 
altitude in altitude. 

 
• Counter slopes and 
talwegs 
This feature is defined 
according to the surface 
hydrology (permanent 
or temporary flows, 
ponds, wetlands and 
poorly drained soils). 

 



D4.3 Final version 
Creation and updating of landslide inventory maps, landslide deformation maps                      Date:    2011-09-05 
and hazard maps as input for QRA using remote-sensing technology 
 

 
 
Grant Agreement No.: 226479 Page 142 of 302 
SafeLand - FP7 

• Superficial slides and 
mudflows 
This feature is defined 
according to presence of 
highly saturated areas at 
the surface, and the 
presence of recent lobes 
without any vegetation 
coverage. 

 
 
Several shaded relief maps were interpolated to highlight the contour and the morphology of 
the landslides (Fig. 3).  
 

 
Figure 3: Example of different hillshade maps produced for the interpretation by considering different 
illumination angles.  
 
 
3.3. Detailed geomorphological map at 1:500 scale 
 
The LiDAR DTM allows to construct a detailed morphological map. On Figures 4 and 5, a 
comparison among a previous map produced at a lower scale with a contour line-interpolated 
DTM of 1976 illustrates the gain in detection of relevant surface features. If the major scarps 
were already mapped, the local morphology of the features were undetectable in some areas 
covered by dense shrub vegetation. 
For instance, the ALS datasets allows to identify a succession of secondary scarps and to 
better discriminate the boundaries among the unstable and stable areas within the landslide 
(Fig. 5).  
The ALS DTM allowed to locate minor geomorphological features resulting from the 'recent' 
activity of the landslide (Fig. 4, 5). The field observations have clarified some specific 
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questions such as the presence of opened fractures, but most of these detailed forms were not 
visible due to the particularly dense canopy which has been filtered with the HRI approach. 
The ALS DTM highlights the progressive 'decomposition' of the lower parts of the landslide 
in many different small slumps and panels (Fig. 11).  

 
 
Figure 4: Comparison between the low resolution DTM from the morphological map of 1976 and the ALS-
derived DTM in a forested area (Villerville landslide). A, B) Location of the landslide sub-areas with difficult 
interpretations; C) Extract of the low resolution DEM; D) Derived morphological interpretation from the 1976 
map and field surveys to highlight the major morphological features with many unaccessible areas, E) ALS-
derived DTM ; F) Interpretation of morphological features from the ALS data. 
 
4. Discussion and Conclusion 
 
In this study, we evaluated the suitability of using an ALS-derived DTM for mapping 
landslides and for identifying morphological features of landslides. The accuracy of the 
landslide DTM based on ALS data has been characterized, and a methodology using different 
sources of information and different visualisation techniques has been proposed to interpret 
the detailed landslide features. The vertical accuracy of the DTM is the open terrain id very 
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good (< 0.04 m) while it is 0.42 m in the ofrested terrain where a HRI filter has been used to 
filter the vegetation coverage. 
 

 
Figure 5: Main morphological features of the Villerville (Cirque des Graves) landslide  
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Landslide Volumetric Analysis Using Cartosat-1-Derived DEMs 

Application: Landslide volume estimation 
Technique: Stereophotogrammetry from passive optical spaceborne sensors 
Main references: Martha, T. R., Kerle, N., Jetten, V., van Westen, C.J. and Vinod Kumar, K.  
(2010): Landslide Volumetric Analysis Using Cartosat-1-Derived DEMs 
Contributors: ITC (T. Martha, N. Kerle, C.J. van Westen) 

Abstract 

Monitoring of landscape changes can lead to the identification of environmental hotspots, improved process 
understanding, and provide means for law enforcement. Digital elevation models (DEMs) derived from 
stereoscopic satellite data provide a systematic, synoptic framework potentially useful to support these issues. 
Along-track high resolution stereoscopic data, provided with rational polynomial co-efficients (RPC), are ideal 
for fast and accurate extraction of DEMs due to reduced radiometric difference between images. In this study, 
we assess the suitability of data from the relatively new Cartosat-1 satellite to quantify large-scale 
geomorphological changes, using volume estimation of the 2007 Salna landslide in the Indian Himalayas as a 
test case. The depletion and accumulation volumes, estimated as 0.55 x 106 m3 and 1.43 x 106 m3, respectively, 
showed good match with the volumes calculated using DEMs generated from manually extracted spot height 
data, also for DEMs generated only with RPCs and without GPS points. The result showed that these data can 
provide an important input for disaster management activities. 

Keywords: Volume estimation, Cartosat-1, landslide, disaster management  

1. Introduction 
 
Volumetric analysis has the potential to monitor and quantify also large-scale events, and can 
be useful in implementing proper risk management strategies or to enforce environmental 
regulations. For example, reliable information on material volume can help government 
agencies to estimate the value of contract and number of days required to clear the debris 
from transportation routes in case of a landslide [Jaiswal and van Westen, 2009], or the 
amount of material required to reclaim the land in case of open-pit mining as a mandatory 
requirement under a mine control act [Townsend et al. 2009]. In the past such assessments 
have typically been done through time-consuming field measurements, although those tend to 
suffer from difficulties in establishing accurate baseline topography. Photogrammetric 
techniques have been increasingly used because of their capability to rapidly reconstruct the 
3D topography from aerial photographs [Kerle 2002; Dewitte and Demoulin 2005]; Kääb 
2002] and, provided such data exist for different time periods, allow objective change 
detection. More recently, civilian Earth observation satellites have offered stereoscopic data 
with sufficient spatial resolution to allow aerial data to be effectively replaced [Tsutsui et al. 
2007; Radhika et al. 2007; Martha et al. 2010; Zhang and Gruen 2006]. In addition, new 
generation satellites such as Cartosat-1 have considerable advantages over airborne stereo 
imagery, due to their high periodicity, synoptic view, high data quality, relatively low cost, 
and quick extraction of digital surface models (DSM) using rational function models (RFM) 
[Martha et al. 2010; Baltsavias et al. 2008]. 
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Cartosat-1, launched by Indian Space Research Organisation (ISRO) in 2005, is a global 
mission planned for cartographic mapping, urban studies and disaster management [NSRC]. It 
carries two cameras, PAN-aft and PAN-fore with -5° and +26° viewing angles, respectively, 
acquiring images of a 900 km2 area (12 000 x 12 000 pixels) with a gap of 52 seconds. The 
ground sampling distance of Cartosat-1 is 2.5 m, and the base to height (B/H) ratio is 0.62. 
Detailed specifications of Cartosat-1 are provided in NSRC. Data from Cartosat-1 are 10 bits 
and provided with rational polynomial co-efficients (RPCs) for photogrammetric processing 
and extraction of 3D information using RFM. In principle, therefore, Cartosat-1 data are well 
suited for fast and accurate 3D surface reconstruction, although in practice there can be 
potential problems due to shadow, occlusion and steep slopes depending on the terrain 
[Martha et al. 2010; Baltsavias et al. 2008]. With Cartosat-1 acquiring along-track data, 
image matching is less problematic than for across-track images due to reduced radiometric 
variation between the two images of a stereo pair [Radhika et al. 2007]; however, factors such 
as valley orientation, sun elevation angle and poor texture frequently hinder accurate 
extraction of elevation data [Martha et al. 2010]. We addressed some of these problems 
through SAT-PP photogrammetric software, especially developed for high resolution satellite 
data and which previously demonstrated the ability to process such stereoscopic data due to 
its superior image matching algorithm [Zhang and Gruen 2006], compared to other 
commercial off-the-shelf (COTS) software types [Martha et al. 2010]. 
In this study we tested the utility of Cartosat-1 data for quantitative volume analysis based on 
cut and fill assessment, an established method for estimating the volume of large landslides 
[Kerle 2002; Tsutsui et al. 2007; Chen et al. 2005]. We used the 2007 Salna landslide in the 
Indian Himalayas as a test case, which offers a great challenge to automatic DEM extraction 
due to steep slopes and large topographic shadows [Martha et al. 2010]. Previous studies have 
demonstrated the utility of DEMs extracted from satellite data for monitoring topographic 
changes due to glacial melting [Surazakov and Aizen 2006; Kääb 2002], landslides [Tsutsui et 
al. 2007], and rehabilitation planning of coal mining areas [Loczy et al. 2007]. The purpose of 
this paper is to assess if Cartosat-1 derived DEMs are sufficiently accurate to quantify such 
changes and to monitor compliance with related legislation. 
 
1.1. Landslide Volume Estimation for landslide hazard assessment 

 
Some of the major earthquakes that have created several deep-seated landslides in the recent 
past are the Kashmir earthquake in India and Pakistan in October 2005 and the Sichuan 
earthquake in China in May 2008. Apart from direct damage landslides also contribute 
sediments to river systems and create siltation problems in reservoirs, reducing their capacity 
for hydro power generation. They also have the potential to create artificial lakes by blocking 
river courses, thus generating potential flash floods in down-stream areas [Dunning et al. 
2007; Wang et al. 2009]. Knowledge of failure volumes is also critical for more accurate 
understanding of the landslide process [Scott at al. 2005] and the preparation of susceptibility 
maps, which show potential areas of future landslide occurrences. For example, landslide 
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susceptibility maps will be more accurate if volume, instead of area of the landslide, is used to 
calculate weights of the terrain parameters. Okura et al. [2003] showed how the volume of a 
landslide directly affects its travel distance, while Dai and Lee [2001] demonstrated that 
frequency-volume relationships can be used to predict rainfall induced landslides. 
Traditionally, failure volumes have been estimated by measuring landslide dimensions 
(length, width and depth) on the ground, using assumptions about the shape of the landslide 
[Cruden and Varnes 1996]. Such ground-based methods may provide accurate volume 
figures, though are time-consuming, error-prone and at times not possible due to terrain 
inaccessibility. Pre- and post-failure topographic maps can also be used for calculating the 
landslide volume using change detection techniques. However, topographic maps are 
typically not updated immediately after the event, or lack sufficient accuracy [Kerle 2002]. In 
order to overcome these problems, stereophotgrammetry with multi-temporal satellite images 
and aerial photographs provide a feasible solution to estimate landslide extents and volumes.  
 

2. Test area  
 
The test area is located in one of the landslide prone areas in the Himalayas. Its centre co-
ordinates are 30° 23′ 38″ N and 79° 12′ 42″ E. It is located in the Nagol Gad (River) sub-
catchment in the High Himalayas in the Uttarakhand state of India (Fig. 1). Nagol Gad is a 
part of Alaknanda catchment, which witnessed several major co-seismic landslides during the 
Chamoli earthquake in March 1999 and it lies very close to the main central thrust [Barnard 
et al. 2001]. Rocks exposed in this area are banded quartzite on the crown, and quartzite inter-
bedded with mica schist at the toe of the landslide. However, the landslide investigated for 
this volumetric analysis was triggered by heavy rainfall in July 2007. It occurred near the 
Salna village in the Chamoli district of Uttarakhand state. The landslide-affected area is 
completely exposed to sun in both pre- and post-landslide images (Fig. 2a and 2b). The 
general topography is steep, with slopes ranging from 18° to 63°. The elevations of the crown 
and tip of the landslide are 1636 m and 1261 m, respectively. The Salna landslide is a 
translational rock slide, which means that the failure has taken place along a planar surface of 
rupture. Its length (crown to tip) is 530 m, with a maximum width at the centre of the 
landslide of 260 m (Fig. 1a). Although there were no fatalities, the major road connecting the 
surrounding area with Chamoli town was blocked for several months, causing hardship to 
local population and damage to the regional economy. 
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Figure 1: Location map of the study area. (a) Three-
dimensional perspective view of the Salna landslide 
with the Cartosat-1 image draped over a DEM, (b) 
and (c) pre- and postlandslide DEMs, respectively, 
showing the distribution of control and check 
points, (d) field photograph showing the synoptic 
view of the landslide, (e) view of the quartzite 
bedrock exposed in (the area above the black dotted 
line) the scarp, and a part of the zone of 
accumulation as seen from the temporarily 
constructed road, and (f) large angular boulders 
with large voids in between, signaling a volume 
increase during deposition. 
 

 

 

3. Methods 
 
3.1. DEM Generation 
 
Two sets of stereoscopic Cartosat-1 data, acquired on 06 April 2006 (pre-landslide) and 16 
December 2007 (post-landslide), were processed using SAT-PP software. Compared to 
established COTS photogrammetric packages, SAT-PP has an improved image matching 
algorithm based on combined matching results of feature points, grid points and edges, 
leading to superior results also in steep terrain [Zhang and Gruen 2006]. Digital surface 
models (DSMs) with 10 m grid size were generated using RPCs determined from the RFM 
and provided by the data vendor. RFM is a generic sensor model and is used as an alternative 
to physical sensor models for block orientation of the stereo-image pair. RPCs are terrain 
independent, and require refinement with ground control points (GCPs) at block level to 
increase the absolute geo-location accuracy of DSMs [Baltsavias et al. 2008]. Therefore, we 
used six GCPs with good planimetric and vertical distribution to refine the orientation result 
of the RFM (Fig. 1b) [Baltsavias et al. 2008]. The GCPs were collected in a differential GPS 
(DGPS) survey using a dual frequency (L1 and L2) Leica 520 receiver. The standard 
deviation of the errors of elevation, longitude and latitude of the points surveyed range 
between 0.10 m to 0.46 m, 0.04 m to 0.15 m and 0.04 m to 0.21 m, respectively. 
The necessity of high DEM accuracy for an elevation change analysis has been emphasized 
by previous researchers [Kerle 2002], [Van Niel et al. 2008]. Kerle [2002] showed how 
especially the combination of errors in the vertical accuracy of photogrammetrically derived 
DEMs and the landslide thickness typically being the smallest dimension readily combine to 
substantial uncertainty. Errors in elevation difference can either result from mis-registration of 
the pre- and post-event DEMs [Van Niel et al. 2008], or from low spatial accuracy resulting 
from sun illumination and valley orientation with reference to the satellite track [Martha et al. 
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2010]. Along-track satellite data such as Cartosat-1 offer improved results of image matching 
due to reduced radiometric variation between images of a stereo pair [Radhika et al. 2007]. 
However, distortion of feature geometry due to steep terrain and variable viewing angle of 
Cartosat-1 has compromised some of these advantages. This problem can be overcome using 
SAT-PP software, which relies on a robust point, grid and feature based image matching 
technique [Zhang and Gruen 2006]. Topographic shadow in mountainous area is another 
problem that creates inaccuracies in a DEM. SAT-PP is also capable of generating the 
adequate number of match points required for an accurate DEM generation for relatively 
small shadow areas; however, large shadows still remain a problem [Martha et al. 2010; 
Zhang and Gruen 2006].  
In an earlier study we assessed the absolute accuracy of the pre-landslide DEM using 10 
independent check points obtained from the DGPS survey, resulting in vertical and 
planimetric root mean square error (RMSE) as 2.31 m and < one meter, respectively [Martha 
et al. 2010]. In addition, spatial accuracy of the pre-landslide DEM was estimated by a 
drainage line comparison method, wherein drainage lines were used as a proxy to estimate the 
error due to spatial auto-correlation in the absence of a very accurate reference DEM [Martha 
et al. 2010]. Subsequently, refinement of the orientation result of post-landslide RFM was 
done by using three GCPs common in the overlap area (Fig. 1c). Thus, both the DEMs are 
brought to the same spatial framework. However, to verify the vertical and co-registration 
accuracies of two DEMs, a residual analysis was carried out between the two DEMs in an 
area adjacent to the landslide (Fig. 1a). This area is unvegetated and no morphological 
changes have occurred during the observation period. The residual analysis shows a vertical 
mean and standard deviation of errors as 0.11 m and 0.06 m, and the same errors for 
planimetry as 0.09 m and 0.05 m, respectively. The low error indicates that both DEMs are 
co-registered properly and have a good vertical accuracy relative to each other. Therefore, any 
change in height can be attributed to morphological changes such as occurrence of landslides, 
and subsequently the volume can be calculated. 
 
3.2. Volumetric analysis 

 
As volume calculation must be based on the actual pre- and post-landslide terrain surfaces, 
vegetation that may have covered the area before failure, or that was possibly retained during 
the landslide, must be corrected for, as it forms part of the photogrammetric surfaces. 
Accurate estimation of vegetation height has previously been shown to be challenging [Kerle 
2002]. In the area of the Salna landslide mainly chir trees, a pine variety typical in the 
Himalayas, are found. The height of some of the uprooted and standing trees (in the adjacent 
area) was measured on the ground. This height, in conjunction with the height of the trees 
measured through manual interpretation of stereo images was used to create a non-uniform 
vegetation height surface (Fig. 2d). Total 74 trees (7 from ground and 67 from stereo image) 
with an 11.87 m mean height, and 19.67 m and 4.29 m as maximum and minimum heights, 
respectively were used for the creation of the vegetation height surface. Subsequently, this 
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surface was subtracted from the automatically generated pre-failure DSM, and a vegetation-
corrected 10 m digital terrain model (DTM) was created. Vegetation correction was not 
required for the post-failure DSM since trees were completely uprooted. After vegetation 
correction area and volume of the Salna landslide were calculated by subtracting the post-
landslide DTM from the pre-landslide DTM, using the cut and fill operation in ArcGIS. This 
operation summarizes areas and volumes of change using surfaces of a given location at two 
different time periods, and identifies regions of surface material removal, addition and no 
change. 
 
4. Results and Discussion 
 
The Salna landslide was triggered due to excessive rainfall, and the pre-landslide Cartosat-1 
image already showed the existence of small active landslides in that area (Fig. 2a). The slope 
length of the main scarp below the crown of the landslide is approximately 50 m (Fig. 2c). 
This landslide completely buried the road with material displaced from the crown part. The 
new road (Fig. 1b), which was temporarily constructed to allow traffic to resume is now 
positioned 62 m outward from its previous location, and the shape of the road is convex 
outward (Fig. 2d), indicating the deposition of a large amount of material and development of 
a hummocky structure. Similarly, the Nagol Gad (River) was pushed 25 m to its right bank by 
the landslide (Fig. 2d).  

Figure 2: Salna landslide. (a) Cartosat-1 
orthoimage of April 6, 2006, showing 
the prelandslide area outlined in white. 
It was a distressed zone with the 
presence of two minor landslides acting 
as a precursor to the main event. (b) 
Cartosat-1 orthoimage of December 16, 
2007, showing the landslide that 
occurred in July 2007. (c) Post-
landslide map showing the (MS) main 
scarp and (MS-1) minor scarps. (d) 
Non-uniform vegetation-height surface 
created by the interpolation of heights 
measured from 74 trees and post-
landslide effects. The new road now has 
a convex outward shape, and the 
original river was pushed outward due 
to the deposition of debris at the foothill 
region. The profile along A–B is shown 
in Fig. 3. 
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Fortunately, no damming of the river occurred due to the landslide. Debris mainly composed 
of boulders of banded quartzite is seen in the zone of accumulation (Figs.1c and 1d). From the 
profile (Fig. 3) and from the extent of the volume gain (Fig. 4b) it is clear that the area of the 
zone of depletion is less than the area of the zone of accumulation, indicating expansion, or 
bulking, of material after the displacement due to fragmentation of the bed rock. 
 

Figure 3: Pre- and post- failure surface 
profile from the crown to tip of the 
landslide. The gray dotted line shows 
the possible extension of the surface of 
rupture over which debris is temporarily 
deposited. The heights of some of the 
chir pine trees were measured on the 
ground (e.g., an uprooted tree in the 
inset photograph). 

 

 

 

 

 

 

The elevation change map shows that maximum deposition of material has taken place at a 
height of approximately 1420 m (Fig. 4a). The cut and fill volumes, i.e. the volumes of 
depleted and accumulated material, were estimated as 0.55 x 106 m3 and 1.43 x 106 m3, 
respectively (Table I). Also, the area of the zone of depletion is smaller than the area of zone 
of accumulation, due to lateral spreading of the broken rock fragments (Fig. 4b). 
So far, we have estimated the landslide volume from DEMs derived with the use of additional 
GCPs. However, the need for field-measured control points severely undermines the utility of 
satellite data for rapid and independent post-landslide assessment. To assess the dependency 
of accurate volume estimation on additional field-mapped GCPs, we also created DEMs only 
with the RPCs provided with Cartosat-1 data. Such a step is reasonable, as additional GCPs 
primarily affect the absolute accuracy of the DEM, and less the relative elevation value 
distribution. Nevertheless, the effect of integrating two such relative surfaces for accurate 
change assessment was unknown. Table I shows that the estimated volume values based on 
RPC-only DEMs fall to within 1–3% of the GCP-supported DEM values, indicating that the 
volume figures are less sensitive to GCPs support than expected. 
The bulking factor (ratio of volume gain to volume loss) of 2.60 (Table I) is comparable to 
previously reported values for similar events, such as the bulking following the flank collapse 
of Casita volcano, Nicaragua studied by Scott et al. [2005]. The bulking of Salna landslide is 
due to two factors: 1) incomplete separation of loss area from gain area, due to which material 
is still lying at the bottom of the hidden rupture surface [van Westen and Getahun 2003], 
which is impossible to be constructed from post-failure stereo data (Fig. 3); and 2) poor 
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sorting of large and angular broken quartzite rock fragments (Fig. 1d) created by the 
translational rock slide, leading to a possible overestimation of the gain volume. However, the 
estimated volume can be considered realistic, since the post-landslide surface was generated 
shortly (approximately five months) after the occurrence of the landslide, suggesting limited 
deposition material loss due to surface erosion and further remobilization. 

 
Figure 4: Volumetric analysis of the 
Salna landslide. (a) Elevation 
difference due to landslide with 
negative values showing the 
lowering of surface and positive 
values showing the rising of the 
surface after the event. (b) Extent of 
the volume loss and volume gain, 
which corresponds to the zones of 
depletion and accumulation, 
respectively. 
 

 

 

4.1. Accuracy assessment of volume 
 
The global accuracy of the DEM has been verified by independent check points. Assessment 
of accuracy of volume is a challenge, particularly with only limited reference data, i.e. 
without a dense network of ground check points for both pre- and post-landslide affected area. 
Due to the absence of detailed verification data for the relatively small landslide area (i.e. part 
of the large DEMs for which accuracy has been checked), we manually extracted spot heights 
[Kerle 2002], identifying 85 and 129 points from the pre- and post-failure datasets, 
respectively, using StereoAnalyst in ERDAS Imagine, and compared the volume obtained 
from spot height data with the automatic results (Table I). The number of points is sufficient 
for a reliable comparison since they were collected with particular emphasis on break-in-slope 
and scarp areas, leading to a surface that models the actual failure area well. Spot heights 
from the pre-failure image were collected by selectively measuring ground elevations in 
between trees, thus eliminating the need for further vegetation correction, and directly on the 
failure and deposition surfaces in the post-failure image. These points were interpolated using 
the TOPOGRID algorithm in ArcGIS to derive reference DTMs [Wise 2007]. 
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Table 1: Quantitative comparison of volumes 

DEM type 

Volume loss (106 m3) Volume gain (106 m3) 

Bulking Before 
vegetation 
correction 

After 
vegetation 
correction 

Before 
vegetation 
correction 

After 
vegetation 
correction 

DEM (with GCP) 0.77 0.55 1.34 1.43 2.60 
DEM (without 
GCP) 

0.76 0.54 1.31 1.41 2.61 

DTM (spot height) 0.67 1.26 1.88 
 
5. Conclusion 
 
Updated elevation data are essential for identifying areas of large-scale topographic changes 
for disaster management or enforcement of environmental legislation. The purpose of this 
study was to assess the potential of a new generation of space borne sensors to provide DEMs 
for the quantification of landscape changes. In this study, DEMs with 10 m grid size 
corresponding to two different time periods, generated from Cartosat-1 data using digital 
photogrammetric methods, were used to quantify large-scale topographic changes resulting 
from a landslide. Following photogrammetric conventions, we generated DEMs with a grid 
size equivalent to 3–4 times of the ground sampling distance. With some data types, such as 
from SPOT5, higher resolutions can be achieved, for example the 2.5 m resolution DEMs 
produced by Tsutsui et al. [2007], using super resolution processing [Latry and Rouge 2003]. 
Interestingly, the previously reported requirement for additional GCPs [Baltsavius et al. 2008] 
was found to be of lesser importance, allowing us to create surfaces with comparable relative 
accuracy also without such field-based measurements. This requires actual co-registration of 
pre- and post-failure DSMs rather than use of absolute coordinates. This means that RPCs 
alone are sufficient for the estimation of volume, thus freeing rapid post-failure volume 
assessment entirely from field data requirements, although refinement of the RFM orientation 
result is required to improve the absolute geo-location accuracy necessary for cartographic 
applications. Knowledge on pre-failure topography is crucial for accurate estimation of 
volume [Kerle 2002]. Cartosat-1 was launched in 2005, and its data were systematically 
acquired, providing substantial archives of images for major parts of the world. Availability 
of post-failure datasets from Cartosat-1 shortly after the event then enabled us to do rapid 
volume estimation. The cut and fill volumes derived from automatic DEMs showed 
reasonably good match with the reference volume derived from DEMs generated using 
manually extracted spot height data. This indicates that a 10 m DEM from Cartosat-1 data can 
be effectively used for large scale elevation change and volumetric analysis such as for a 
deep-seated landslide. The information on landslide volume can effectively be used to 
establish magnitude-frequency relationship for quantitative estimation of landslide hazard. 
However, the volume values calculated based on manually extracted spot heights shows 
deviations of about +17% and -12% for the volume loss and gain areas, respectively, resulting 
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also in a bulking factor that is 27% lower than based on automatic DEMs with GCPs. This 
indicates that where vegetation cover is not uniform, as was the case at Salna, instead of a 
constant vegetation elevation surface to correct pre- and post-failure DSMs it is preferable to 
construct a more accurate vegetation layer based on multiple evidence, such as the tree trunk 
length measured in the field, but also extrapolation from the height of trees left standing in 
adjacent areas. 
This study showed that Cartosat-1 data have the potential to derive volume information 
critical for disaster assessment, in principle without any additional GPS field measurement, 
provided that any present vegetation artifacts are removed from the DEMs used in the change 
assessment. It must also be noted that, with landslide thickness, i.e. z, typically being the 
smallest dimension, elevation errors resulting from photogrammetric artifacts or inaccurate 
DSM-to-DTM correction will have a correspondingly large consequence on volume 
calculations. Quantitative estimation of similar large-scale changes in the landscape, due to 
open-pit mining and urban waste disposal, although not shown in this study, can in principle 
also be done with Cartosat-1 derived DEMs since they require multi-temporal DEMs similar 
to the ones used in this study. 
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Image correlation of TLS (Terrestrial Laser Scanning) data for 
landslide monitoring 

Application: Landslide monitoring 
Technique: Passive ground-based sensors 
Main references: Travelletti, J., Delacourt, C.,  Malet, J.-P. (in review): Multi-date 
correlation of Terrestrial Laser Scanning data for the characterization of landslide kinematics. 
Contributors: CNRS (J. Travelletti, C. Delacourt, J.-P. Malet) 
 
Abstract 
 
This work presents a simple method to obtain 3D deformation and displacement maps from repeated TLS 
acquisitions by taking full advantage of the geometric information available in consecutive point clouds. The 
performance of the method is tested on TLS datasets acquired at the toe of the Super-Sauze landslide (South 
French Alps) from October 2007 to May 2010. 
The method is based on the simplification of a 3D matching problem in a 2D matching problem by using a 2D 
statistical normalized cross correlation function. The point clouds are first filtered from vegetation and co-
registered in a common local coordinate system by aligning the TLS acquisitions on stable parts in the 
surrounding of the landslide. A perspective projection is then applied to project and interpolate the 3D point 
clouds on a 2D regular grid perpendicular to the viewing direction. In order to emphasize the relief morphology 
projected in the 2D grid, the 2D gradient of the distance separating the point clouds from the TLS location is 
computed and then correlated. Then, a re-projection of the correlated displacements in the 3D local coordinate 
system allows to reproduce the 3D displacement field and to compute the strain field.  
The results indicate that amplitudes of displacement smaller than the spatial resolution of the TLS point clouds 
are detectable with low noise data. Comparisons with the 3D amplitudes of displacement computed (1) with the 
Iterative Closest Point algorithm and (2) with DGPS observations of benchmarks indicate an average accuracy of 
the method of 4 cm. 
 
Keywords: terrestrial laser scanning, point clouds, image correlation, landslide, displacement monitoring 
 

1. Introduction 

In the last few years, automatic matching algorithms applicable to Terrestrial Laser Scanning 
(TLS) data have started to be developed because of their capability to fully exploit all the 
geometric information available in the point clouds. The objective of these techniques is to 
find correspondences among typical features or objects located in multi-temporal point clouds 
assuming that the tracked object has a constant geometry in time and/or a perfectly rigid 
behaviour. The Iterative Closest Point method [ICP; Besl and McKay, 1992] and the Least 
Squares 3D Surface Matching methods [LSSM, Gruen and Akca, 2005] are among the most 
used algorithms for the automatic characterization of 3D displacement fields. Their 
application to landslide monitoring has been demonstrated by Teza et al. (2008), Monserrat 
and Crosetto [2008] and Oppikofer et al. [2009]. Teza et al. [2007] presented an automatic 
calculation method using an ICP-based piecewise alignment method. In addition to sensor-
based technical limitations (instrumental errors, point resolution, laser beam divergence), they 
pointed out the problem of three limiting factors affecting the calculation of the 
displacements, such as the presence of shadow zones (unscanned areas), important soil 
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deformation and growth of vegetation.  
 

 

Figure 1: View of the Super-Sauze landslide from the TLS base station. The picture (18 Oct. 2008) corresponds 
to the plan perpendicular to the viewing direction of the laser scan. The toe of the landslide and the stable part 
are included in the scanned area. 
 
The objective of this work is to propose a simple method to measure the 3D displacement 
field of a slow-moving clayey landslide, and derive displacement and deformation maps from 
repeated TLS acquisitions. The method is based on the application of a normalized cross-
correlation function in order to exploit the complete geometrical information available in the 
point clouds. The hypothesis is that for objects scanned from a unique view point, simple 2D 
correlation functions (largely used in digital photogrammetry analyses) can be applied on 
multi-temporal point clouds and yield the same range of accuracy than complex and time-
consuming 3D Surface Matching algorithms. Numerous examples demonstrated the 
efficiency of such type of statistical function to detect the displacement field of landslides 
from satellite and aerial optical images [Casson et al., 2003; Delacourt et al., 2004; LePrince 
et al., 2008], but only a few work has been carried out to apply this approach to TLS point 
clouds [Travelletti et al., 2008; Schwalbe et al., 2008]. 
The performance of the method is tested on datasets acquired at the toe of the Super-Sauze 
mudslide (South French Alps) over a period of three years (October 2007 - May 2010). First, 
the principles of the method are presented. Second, the application to the landslide dataset is 
detailed and the performance is evaluated among other measures of displacement. Finally, a 
strain analysis is applied in order to define the deformation and displacement regime of the 
landslide, and identify some possible controlling factors.  
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2. Data and Methods 
 
2.1 Study site 
 
The Super-Sauze landslide has developed in Callovo-Oxfordian black marls of the 
Barcelonnette basin (Alpes-de-Haute-Provence, France) (Fig. 1). In the 1960s, the area was 
affected by deep and shallow failures in the scarp area. The collapsed material composed of 
rocky panels progressively transformed into a silty sandy matrix integrating marly fragments 
of heterogeneous size through successive drying/wetting and freeze/thaw cycles [Malet, 
2003]. In the late 1970s, the mobilized material started to accumulate in the gullies. From the 
1970s until today, the landslide is gradually covering the torrential stream located 
downstream with typical range of velocity between 1 to 3 cm.d-1 and acceleration peak until 
40 cm.d-1 in the spring season [Malet et al., 2002]. In 2007, the landslide extent over a 
distance of 900 m between an elevation of 1980 m at the crown and 1760 m at the toe with an 
average width of 135 m and a average slope of 25°. The total volume is estimated at 560,000 
m3 [Travelletti and Malet, 2011].  
The displacements are currently monitored by Differential Global Positioning System surveys 
(DGPS), an automatic system of optical photographs [Travelletti et al., in press] and TLS 
acquisitions. The landslide ground surface nearly free of vegetation is particularly adapted for 
TLS monitoring.  
 
2.2 Data acquisition 
 
For this study, the monitoring of the toe was realized with a long-range terrestrial laser scan 
Optech ILRIS-3D, which principle is based on the time-of-flight distance measurements using 
an infrared laser [Slob and Hack 2004]. Ten acquisitions were acquired between October 
2007 and May 2010 for the same base station at an average distance of 100 m from the 
landslide toe. At this distance, the laser diameter on the ground surface is estimated between 3 
cm and 5 cm. 
 
2.3 Methodology 
 
The approach is based on the reduction of a 3D matching problem in a 2D matching problem 
by using a 2D statistical normalized cross correlation function. The point clouds are co-
registered in a common local coordinate system following the method used in Oppikoffer et 
al. [2009]. Each TLS acquisition is aligned on the stable parts of the landslide composed of a 
rough topography made of crests and gullies whose morphology is preserved during the 
whole acquisition period (Fig. 1). After a first manual matching, the ICP algorithm is used to 
refine the alignment quality with a final 3D error of 4 cm (Fig. 2). For the absolute 
georeferencing, a georeferenced Airborne Laser Scanning (ALS) point cloud acquired in 
October 2007 was used as a reference. The TLS point clouds were aligned as single point 
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clouds on the stable parts in the ALS point cloud. The co-registration accuracy of the 
sequential point clouds is thus not affected by the georeferencing accuracy estimated to an 
average error of 1 cm and a standard deviation of 14 cm.  

 

Figure 2: Profile across the point clouds showing the co-registration quality. 

The type of representation of the topographical surface is of paramount importance to the 
detection of displacements of the landslide. Because the correlation function gives good 
results when the input data contains regions of rapidly varying pixel information [Duffy and 
Hughes-Clarke, 2005], the norm of the 2D gradient in u and v directions of the distance 
between the point clouds and the TLS station is calculated for emphasizing the morphology of 
the landslide toe. The generated images are then converted in grey-scale values (16 bits) and 
are used as inputs for the correlation step to compute the 2D displacement field in the plane 
perpendicular to the viewing direction of the laser scan. A projective transformation [Kraus 
and Waldhaüsl, 1994] was used to project gradient raster in a plane perpendicular to the 
viewing direction of the laser scan. 
 
2.3.3. Determination of the displacement field by TLS image correlation 
The correlation principle consists in recognizing identical intensity distribution patterns in a 
correlation window in two images to determine the displacement of the center of the window 
by maximizing a normalized cross correlation function [Chambon, 2003; Hild, 2003]. The 
size of the correlation window is a compromise between the desired accuracy and the spatial 
resolution of the displacement field [Delacourt et al., 2007]. In this work, a correlation 
window of 30 pixels produced the most uniform vector field over the entire image. This 
correlation window corresponds to a ground surface varying between 0.5 m2 and 3.5 m2. A 
sub-pixel correlation [Press et al., 1997; Chambon, 2003] is also used to detect displacements 
magnitudes below the limit fixed by the points spacing of 3 cm.  
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The result of the correlation corresponds to the displacements ∆ u and ∆v along the u-axis and 
v-axis with their coefficient correlation value representing the matching quality. The 
displacements ∆ u and ∆ v are then reprojected in 3D displacements in the local coordinate 
system. 
 
2.3.4. Determination of the strain field by TLS image correlation 
The analyses of the displacement field do not exhaust a kinematics analysis and is therefore 
supported by a strain analysis used to highlight areas in the landslide toe with different 
behaviors. Because the magnitude of the horizontal displacements represents on average 93% 
of the magnitude of the 3D displacement, the 2D Cauchy’s strain tensor E was used assuming 
small deformation [Pollard and Fletcher, 2010, Pan et al., 2009]. 

 
Figure 3: Images derived from the gradient calculation on the TLS point clouds. The morphology of the 
landslide toe is very well represented and the progression of the landslide toe is also particularly highlighted. The 
grey-scale images are then correlated.  
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3. Results 
 

3.1. Displacement maps of the landslide 
 

The displacements are generally well reproduced for all periods of acquisition. The contrast in 
displacement between the landslide area and the stable area gives confidence on the calculated 
displacement field. Four acquisitions periods (October 2007 - May 2008, July 2008 - October 
2008, October 2008 - May 2009, July 2009 - October 2009) are presented to illustrate both the 
performance of the approach and the behavior of the landslide (Fig. 4). Conservation of 
surface texture is well fulfilled in the periods characterized with low displacement rates, 
especially between July and October (Fig. 4A). For the period July-October 2008, 
displacements between 0.5 and 1.5 m are observed, thus corresponding to an average 
displacement rate of 0.6 to 1.7 cm.day-1. The displacement field displays significant spatial 
heterogeneities. The largest displacements are detected in the front of the toe where the terrain 
slope increases. The detachment of a toe compartment is also highlighted in the front. The 
same period of the following year (July-October 2009) displays a very different kinematics 
both in terms of magnitude and spatial distribution. Displacements are shorter and range from 
0.1 m at the front of the landslide toe to 0.6 m in the upper part of the toe, thus corresponding 
to an average displacement rate of 0.1 to 0.8 cm.day-1. 
  
3.2. Comparison and validation of the displacements 
 
Two methods are used to validate the computed displacements. Five rigid blocs distributed on 
the landslide toe are identified in the point clouds of each TLS acquisition (Fig. 5A). The 
triangulated blocs of the first TLS acquisition are aligned on their corresponding triangulated 
blocs in the second TLS acquisition using the ICP method. The results of the comparisons 
between the displacement obtained with the ICP method and those derived from the 
correlation are synthesized in Fig. 5B. The displacements derived from both methods are in 
very good agreement (r2 = 0.99) with an average error and a standard deviation of 2 cm. 
The second method consists in comparing the obtained displacements with a Differential 
Ground Positioning System surveys (DGPS) on the same blocks (horizontal and vertical 
accuracy of 0.02 m and 0.05 m). The displacements perfectly correlate (r2 = 0.99). A mean 
error and a standard deviation of 0.04 m and 0.03 m are determined (Fig. 5C). This results 
show that the error due to the co-registering is about 3 cm.  
 
3.3. Strain analysis 
 
The strain field derived from the acquisition over the periods of July - October 2008 and 2009 
is used to illustrate the kinematics of the toe. The first step consists in determining the 
accuracy of the computed strain field. Therefore, a null hypothesis is performed on the stable 
areas assuming that the strain error in these parts is similar to the strain error in the landslide. 
The accuracy analysis on the stable parts shows that more than 90% of the surface strain and 
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shear strain ranges between ± 2.10-3 which is therefore considered as the lowest interpretable 
value. 

 

Figure 4: 3D displacements field obtained by TLS measurements related to the acquisition periods of (A) July - 
October of the years 2008 and 2009 and (B) the periods of October - May of the years 2007 and 2008. The 
dashed circle indicates the detachment of compartment at the front of the toe. The displacement maps are draped 
on their corresponding point clouds (intensity values). 
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Figure 5: Comparison and 
validation of the displacements 
obtained by correlation with 
the ICP method and DGPS 
monitoring A) locations of the 
blocs in the point cloud, B) 
comparison with the ICP 
method and C) comparison 
with the DGPS monitoring.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Strain field obtained 
by TLS measurements related 
to the acquisition periods of 
July – October of the years 
2008 and 2009. Maps of the 
Surface strain (positive value 
mean extension) (A) and 
shear strain (B). The dashed 
squares refer to Fig. 7. The 
strain maps are draped on 
their corresponding point 
clouds (intensity values).  
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Figure 7: Tensile fracture (1) and shear fracture (2, 3) observed in the front of the toe (block 4 in Figure 7) on an 
orthophotograph acquired in October 2008 by Niethammer et al. [2010]. The location of the pictures is indicated 
on Figure 6. 
 
The strain analysis allows to discriminate areas under extension or compression affected by 
shearing (Fig. 6). Note that because of the finite size of the correlation window and the strain 
window, a significant smoothing of the strain fields is introduced, associated with a spatial 
spreading of the structures. The upper part of the toe is characterized by a succession of 
approximately parallel bands (width of 5 to 10 m) in compression and extension whose main 
orientation is perpendicular to the sliding direction (Fig. 6A). Except at the proximity of the 
stable part, the upper part is not affected by important shearing (Fig. 6B). The location of the 
compression and extension zone changes from 2008 to 2009, thus suggesting a displacement 
of these areas with the landslide material. The behavior of the toe front is very different 
considering the year 2008 or the year 2009. In 2008, extension is observed, thus inducing 
compression in the material located in the very front of the toe near the boundary of the 
landslide (Fig. 6A). The consequence of this extension results in the development of tensile 
fissures identifiable on the field (Fig. 7). The toe front is also affected by important shearing 
concentrated along the landslide boundary. The important shear magnitude in these areas is 
confirmed by very persistent shear and tensile fissures affecting the landslide material 
(Fig. 7). In 2009, the deformation affecting the toe front is less important than in the previous 
year because the displacements in that part are very low and uniform.  
 
4. Discussion and Conclusion 
 
This work presents a simple approach to derive the 3D displacement field from consecutive 
TLS acquisition by fully exploiting the geometrical information contained in the point clouds. 
This method provides an alternative to complex 3D matching algorithms since the 
implementation of 2D correlation algorithms is much simpler and time consuming. In the case 
of landslide characterized without excessively dense vegetation cover, the proposed approach 
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has been demonstrated to be an accurate method for the determination of the 3D 
displacements. The error related to the approach itself is negligible compared to the 
instrumental and co-registering errors. The strongest limitation of the approach is due to the 
development of strong deformation between two TLS acquisition.  
The kinematics of the toe of the Super-Sauze landslide could be determined. The obtained 
displacements are in perfect agreement with the displacements computed with the ICP 
algorithm and the displacements derived from a DGPS survey. The 2D strain analyse allowed 
to detect different kinematics patterns in the landslide toe. These patterns are in good 
agreement with the observed fissuring.  
The approach would be particularly adapted for slow deformation of rock instabilities, 
because the plastic deformations of the objects (rock compartments) are less important than in 
soils. In addition the stress can be derived from the strain analysis if an elastic constitutive 
behaviour of the material is assumed, typically in pre-failure stage. Additional efforts are also 
still necessary to adapt the method to different acquisition configurations. Finally, the 
proposed approach can be setup in an automatic routine that can be potentially used in 
permanent monitoring systems. 
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Abstract 

This case-study presents preliminary results of the application of object-oriented segmentation and classification 
using LiDAR derivatives. The aim of this contribution is to highlight the possibilities of using this combination 
for recognition and classification of landslides in densely vegetated areas where spectral data do not allow 
accurate landslide inventory mapping. The test area is the Flemish Ardennes (Belgium) where deep-seated 
landslides are located on soil-covered hillslopes. A relatively qualitative approach based on expert-knowledge is 
presented. The results obtained show that object-oriented analysis using LiDAR derivatives (such as slope 
gradient, curvature and difference in elevation) and edge detection allows recognition and characterization of 
profound morphologic properties of deep-seated landslides. Main scarp, landslide boundary and landslide 
segments were successively classified. Based on length/width characteristics and presence of reverse slopes the 
landslides were further categorized as rotational or complex slides. Future results will focus on improving the 
segmentation and automating of the classification procedure. 

Keywords: landslide mapping; LiDAR; object-oriented image analysis, conceptualisation, vegetated landslides 

1. Introduction 
 

Light Detection and Ranging (LiDAR) and its wide range of derivative products has recently 
become a powerful tool in landslide research, particularly for landslide identification and 
landslide inventory mapping. Since the availability of LiDAR, shaded-relief, slope, surface 
roughness and contour maps, and other derivatives have regained popularity, especially for 
landslide inventory mapping in forested areas [Schulz, 2004; Van Den Eeckhaut et al., 2007; 
Haneberg et al., 2009].  
In contrast to the many studies that use expert-based analysis of LiDAR derivatives to identify 
landslides, only few studies have attempted to develop computer-aided methods for extracting 
landslides from LiDAR data [McKean and Roering, 2004; Booth et al., 2009]. Promising 
results were obtained with surface roughness parameters. All these automated attempts have 
been carried out in a pixel-based analysis. However, with high resolution topographical data 
such as LiDAR, object-based or object-oriented analysis (OOA) might provide better results. 
OOA rests upon two interrelated methodological steps: (1) segmentation or regionalization of 
pixels into meaningful, homogeneous objects, that reduce the noise more and more confronted 
with in a pixel-based analysis and that facilitate a multi-scale analysis [Blaschke, 2010]; and 
(2) rule-based classification incorporating spectral, textural, morphometric and contextual 
landslide features. It is clear that the quality of the segmentation largely controls the 
classification.  
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OOA has gained increased attention for (semi-)automated landslide identification from 
passive optical airborne and satellite sensor data [Barlow et al., 2003, Martha et al., 2010; 
subm.; Lu et al., in press; Stumpf and Kerle, subm]. These studies have proven the potential 
for creation of inventories of recent landslides of different types. Yet, Digital Elevation 
Models (DEMs) have only been used in the second step, the classification. 
The identification of old vegetated landslides, not detectable from passive optical images, has 
not been investigated so far. Van Asselen and Seymonsbergen [2006] used LiDAR derivatives 
in an OOA for semi-automated geomorphological mapping. Their classification included 
slopes with mass movement. They did not focus on individual landslides as separation of 
individual landslides of different types was difficult.  
The objective of this study is to test OOA for landslide inventory mapping using LiDAR data 
only for both the segmentation and classification steps. As such we enter in the field of 
geomorphometry. More specifically, we will exploit the profound morphologic manifestation 
of old, densely vegetated landslides to semi-automatically map their extent using LiDAR 
derivatives, and we will outline the pros and cons of the methodology. We focus on two study 
areas, i.e. the Flemish Ardennes (Belgium) and Vorarlberg (Austria). As this study is ongoing, 
we only present preliminary results of the first study area. The Flemish Ardennes is a hilly 
region characterised by loose tertiary lithology (alternation of clays and more sandy lithology) 
affected by more than 200 landslides [Van Den Eeckhaut et al., 2007; case-study 7 in D4.1]. 
 
2. Data and Methods 
 
2.1. Data 
 
The LiDAR data (AGIV, 2005) used in this study are similar to the data used for a smaller 
study area by Van Den Eeckhaut et al. [2007]. Flights took place in 2001 and 2002. An 
Azimuth Aeroscan small footprint (30 cm) multi-return LiDAR system with a pulse rate of 15 
kHz and vertical accuracy (RMSE) of 4 cm was used. Laser pulses were sent at equal 
intervals within 600 m wide swaths with average pulse density of 1 per 4 m². The last return 
from each pulse was assumed to be from the soil surface, although this was not always the 
case. Terrascan software was used by the vendor for the production of the bare earth DTM, 
and a manual check followed. The data have a point density of at least 1 per 20 m², a 
horizontal accuracy below 15 cm and an average vertical accuracy that depends on vegetation 
height, decreasing from 7 cm for freshly cut lawn to 20 cm for pastures and forests [GIS-
Vlaanderen, 2003]. From the LiDAR point data, a Triangulated Irregular Network (TIN) was 
derived which was then converted to a Digital Terrain Model (DTM) with a 2 m resolution 
and after low pass filtering (kernel size 3) different LiDAR-derivatives were produced. 
LiDAR derivatives of different order can be used. However, higher order derivative maps are 
more and more deviating from human conceptualization [Minar and Evans, 2008]. Therefore 
the derivatives evaluated in this study (Table 1) are focussing on the lower order maps which 
the human brain also uses for delineating landslide boundaries and classifying landslide parts. 
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 Table 1: Maps used in the study 
Map  Additional information 
Image layer (2 m x 2 m resolution)  
DTM (m)  
Slope gradient (%)  
Plan- and profile curvature ()  

Edge_slope Map obtained through edge detection (pixel min/max filter in 
eCognition) on Slope gradient map 

Edge_slopecl Expert-based classification of Edge_slope map 
Dif_DTM_DTMki (m)  
with i=15, 25, 50, 75 

Difference between original DTM and DTMki with DTMki: 
raster map where each grid cell represents the mean value of a 
moving window with kernel size ki with i=15, 25, 50, 75 
(best result was obtained with i=50)  

Thematic layer (vector map)  
River Derived from the DTM using the hydrology toolbox in ArcGIS 

 
2.2. Conceptualization of landslides and translation to OOA 
 
The ultimate benchmark of OOA is human perception [Lang, 2009]. Our visual sense of any 
kind of object is a common experience, yet not always easy to communicate and even more 
difficult to translate in rule sets. Hence, (semi-)automated classification of landslides, almost 
always represents an attempt to replicate subjective landslide recognition (Martha et al., 
2010). Stumpf et al. (subm.) provide an overview of image object features previously used in 
OOA-based landslide inventory studies. Most of these features are not solely characteristic for 
landslides, and many are related to passive optical images (i.e. spectral information, texture) 
making them not very useful in a LiDAR oriented approach where the focus should be put on 
identification of geomorphometric features. Figure 1 contains the conceptualization of 
landslides including old deep-seated rotational/translational slides with a flow characteristic 
(i.e. complex slides) and rotational slides, landslide-free terrain (mainly cropland and 
pastures) and possible false positive landslides (road-and riverbanks and field borders). The 
ultimate objective is to find a classification ruleset based on the listed characteristics. 
Translation of the landslide concept in eCognition starts with segmentation. Different 
segmentation procedures are available, but so far landslide studies mainly used 
multiresolution segmentation. Also we use this procedure, but in combination with Contrast 
Split segmentation (Fig. 1), which segments an image or image object into regions with high 
and low values. It is based on a threshold that maximizes the contrast between the resulting 
objects and low objects, where a possible range of the threshold can be predefined by the user. 
The scale factor is one of the most important factors influencing the segmentation [Drăguţ et 
al., 2010] and recently several procedures for objective selection of appropriate scales for 
multiresolution segmentation have been suggested. Drăguţ et al. [2010] created the estimation 
of scale parameter tool (ESP) that allows estimating the scale parameter for segmentation of 
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one image. Other attempts for optimization of scale are suggested by Martha et al. [accepted]) 
and Stumpf et al. [accepted]. Up to now, we used ESP as it fast and straight forward. 
The segmentation and classification procedure was calibrated for a 10 km2 test area in the 
Flemish Ardennes. It was then applied to the 50 km2 area surrounding the test area (Fig. 2). 
For the test and validation area, the existing landslide inventory map obtained through visual 
inspection of LiDAR derivative maps and field surveys [Van Den Eeckhaut et al., 2007] 
contains subsequently 4 and 14 rotational slides, 10 and 16 complex slides, 4 and 6 possible 
slides (less clear geomorphic manifestation) and 2 and 15 shallow slides. The latter are not 
taken into account in this study. 
 

 
Figure 1: Human conceptualization of landslides and translation to object oriented analysis (S: slope gradient, 
StDv_Slope: standard deviation of slope gradient; Plcv: plan curvature) 
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3. Results 
 

3.1. Landslide identification 
 
Figure 1 shows the procedure followed for segmentation and classification. First, landslide-
free agricultural fields were extracted. The segmentation procedure for this included detection 
of edges on the slope map and subsequent multiresolution segmentation using the resulting 
map (Edge_slopecl). Then, a sample of landslide-free field and landslide-affected segments 
was analysed and segments with a standard deviation of slope gradient below 5.3. (i.e. mean - 
standard deviation calculated for sample of landslide-affected segments) were found to be 
landslide-free fields. 
For extraction of landslides, the most clear landslide characteristics, the main scarps, were 
extracted first, then the flanks and finally the landslide-affected area. Contrast split 
segmentation of the slope map was carried out to separate steep (classified scarp candidates) 
from flatter terrain. The flatter terrain in this map was subsequently split with multiresolution 
segmentation of the Dif_DTM_DTMk50 map (Table 1) and the river map (Fig. 2).  
Main scarp segments were extracted from scarp candidates using their concave planform. As 
individual scarps could consist of several segments a growing procedure was subsequently 
used. Based on their width, large and small main scarp segments were separated because 
during the calibration procedure more false positives were obtained for smaller main scarps.  
Compared to main scarps, the morphologic manifestation of flanks is much less clear. No 
appropriate procedure has been found for segmentation of flank candidates yet, and thus the 
focus was not put on landslide flanks itself but on segments bordering the sides of the 
landslides. Especially for the upper part of the landslide, these segments are located above the 
surrounding segments (i.e. have mean Dif_DTM_DTMk50>0). However, for rotational slides 
also segments of reverse slope meet this criterion. This had to be taken into account when 
classifiying the landslide-affected area. The latter was started from the main scarp (first the 
large and subsequently the small) in downslope direction. The procedure consists of a 
succession of loops of procedures ‘grow’, ‘merge’ and ‘find enclosed by’. Finally, the 
unclassified segments were classified as landslide-free field. The results obtained are shown 
Figure 2.  
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Figure 2: Test (with rectangular) and validation area in the Flemish Ardennes: (A) The shaded relief map is 
overlain with the expert-based landslide inventory map (LiDAR data © AGIV); (B) Preliminary landslide 
inventory obtained with OOA. 
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3.2. Accuracy assessment 
 
Accuracy assessment can be carried out by comparing the landslide inventory obtained with 
OOA with the expert-based inventory (Fig. 2). No difference in accuracy was found for the 
calibration and validation area. The rotational slides in the central south of the study area are 
for example in agreement with the expert-based inventory. The two large complex slides in 
the south, however, are not identified with OOA. Their surface morphology is probably too 
subdued and affected by anthropogenic interventions (construction of houses and roads in the 
lower deforested part of the landslides).  
For both complex and rotational slides the extent of about 70% of the landslides were 
correctly identified (Table 2). These results are in the same order as the results obtained by 
Martha et al. [2010]. False negatives (unidentified landslides) are always landslides for which 
the main scarp was not correctly identified. In most cases the main scarps were initially 
identified as scarp candidates though later omitted because of a plan convex morphology. The 
observation that false negatives (i.e. missed landslides) generally have smaller main scarps 
supports the idea of distinguishing between large and small main scarps. 
 
Table 2: Accuracy assessment for number of landslides identified with OOA and LiDAR derivatives 
 > 50% of landslide* Main scarp but < 50% 

of landslide 
Not identified 

 Number % Number % Number % 
Complex slide 18 69.2 1 3.8 7 26.9 
Rotational slide 13 72.2 1 5.6 4 22.2 
Possible 2 20 3 30 5 50 
* Generally > 75% 
 
The OOA landslide inventory contains also about 10 zones not identified as landslides by 
experts. These are either steep valley heads (where some slope failure might not be excluded) 
or zones where a road bank or earthen bank bordering a field was misclassified as a main 
scarp and subsequently grown into a landslide. Generally, this last group of false positives has 
an irregular form. 

4. Discussion 
 
4.1. LiDAR and eCognition 
 
Compared to older versions, eCognition Developer 8 has been improved with regard to 
application of LiDAR data. The software now provides native LiDAR support so that LiDAR 
data can be loaded directly in its point cloud format (.las), and procedures to transform the 
original .las files in DTMs and Digital Surface Models (DSMs) can be downloaded from the 
community. This improvement has resulted in an increasing use of LiDAR data in OOA 
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studies dealing with building or tree extraction, most often in combination with passive 
optical images.  

4.2. LiDAR and OOA 

For (semi)automatic mapping of densely vegetated landslides, an alternative to passive optical 
sensors has to be found for production of landslide inventory maps. LiDAR derivatives are 
possible candidates. Their use was therefore tested in an OOA. An attempt was made to 
translate the human conceptualization of landslides and possible false positives into a 
segmentation and classification rule set. As we obtain similar accuracy results (i.e. 70%) 
compared to previous studies using OOA and passive optical remote-sensing data [Martha et 
al., 2010] it is worthwhile to further exploit the possibilities of OOA with LiDAR data.  
In soil covered areas such as Flanders, but also the Tualatin Mountains (Oregon), and the 
Puget Sound lowlands [Booth et al., 2009] landslides are generally characterized by a much 
higher surface roughness compared to the surrounding landslide-free areas. The preliminary 
results suggest that slope gradient and surface roughness (standard deviation of slope 
gradient) provide opportunities.  
In a mountainous area, such as our second study area in Vorarlberg (Austria), it is more 
difficult to distinguish landslides from non-landslide area as stable bed rock outcrops around 
landslides also have high topographic roughness. Additionally the number of false positive 
main scarps will be higher due to the presence of steep cliffs. 
Some differences between the use of passive optical remote-sensing data and active optical 
remote-sensing data such as LiDAR were observed. In previous studies using passive optical 
remote-sensing data landslides were most often consisting of one or a few segments. 
However, landslides are geomorphological complex and consist of different parts with 
different geomorphological characteristics. Hence, they are not represented by one single 
segment when derived from LiDAR derivatives, and the aggregation from different segments 
into one final landslide segment is difficult.  
So far the use of directional distributions (such as aspect or flow direction) which have no true 
zero and for which any designation of high or low values is arbitrary has been avoided, partly 
because features such as mean and standard deviation (as provided by eCognition or ArcGIS) 
are not correct for segments facing the north (around 0 or 360°). Martha et al. [2010] used 
flow direction in combination with main direction of segments, but only for segments 
representing complete objects with homogenous spectral characteristics. Hence, the main 
direction of the segments was really representing the main direction of the real object which is 
not necessarily the case for the sub-segments obtained in our analysis. Therefore features such 
as and main direction, aspect and flow direction, but also length/width relation are often only 
useful when landslides are represented as one single segment, i.e. at the end of the 
classification process when all landslide segments are joined.  
The downslope part of a landslide often has a poor geomorphometric signature. However, this 
problem has also been reported for expert-based landslide inventory mapping [Schulz, 2004]. 
For delineation of landslide boundaries several edge detection procedures have been tested 
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but so far without great success. Edge detection requires the definition of a lower threshold 
defining the edge. If this value is taken too low then the image shows too many edges. On the 
contrary, if the value is too high then the image shows discontinuous edges, and misses edges 
of the lower part of the landslides. Given that the geometric signature of landslide flanks is 
highly variable, no optimal threshold was found so far. 
Recent studies have focused on objective classification of segments. Martha et al. (subm.) 
used k-Means cluster analysis and Stumpf and Kerle (subm.) random forests. It should be 
further investigated whether one or both approaches are also useful in the context of this 
study. Stumpf et al. (subm.) distinguished between landslide segments and non-landslide 
segments including all types of spectrally similar objects. In our study neither all landslide 
segments nor all possible false positives can be put in two classes only. Therefore, similar to 
Martha et al. (2010), so far thresholds were only obtained through simple statistical analysis 
of limited samples selected in the test area. 
 
5. Conclusions 
 
The results obtained show that OOA using LiDAR derivatives (such as slope gradient, 
curvature and difference in elevation) and edge detection allows recognition and 
characterization of profound morphologic properties of deep-seated landslides. Main scarp, 
landslide boundary and landslide segments were successively classified. Overall about 70% of 
the landslides of an expert-based inventory were also included in the object-oriented 
inventory. Unidentified landslides were misclassified because they had a less profound or 
plan convex main scarp. About 10 plan concave road banks or river valley heads, on the other 
hand, were incorrectly classified as landslides. Based on length/width characteristics and 
presence of reverse slopes the landslides were further categorized as rotational or complex 
slides. 
In the future attention should go to improvement of the segmentation and automating the 
classification procedure. With regard to the segmentation the detail present in the LiDAR data 
causes sometimes segments with a strange form or spurs. This should be avoided in the future 
by appropriate preprocessing (filtering) of the data, and selection of the best LiDAR 
derivatives and scale for segmentation and selection of the optimal scale for segmentation. 
Such improvements will probably automatically result in higher classification accuracy. 
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3.4. MULTI-SENSOR DATA ANALYSIS METHODS 

3.4.1. Data fusion 
[ITC+CNRS] 

Due to the complexity and diversity of landslide processes a multitude of different 
instruments and analysis methods is generally desirable to investigate different landslide types 
and important aspects such as geometry, velocities and material properties. Similarly to data 
fusion approaches in geophysical investigations [Grandjean et al., 2009] and early warning 
systems [Arnhardt et al., 2010] the fusion / combination of remote-sensing datasets targets to 
minimize uncertainties with multiple evidences and attempts to exploit synergies from 
multiple sensors illuminating different aspects of the landslide. Data fusion comprises all kind 
of methods which systematically combine different data sources, whereas various data fusions 
methods are available at different processing levels. Data fusion can be applied at three 
different levels, including the direct combination of raw sensor signals, features extracted 
from the sensor data and decision methods that combine multiple inferences derived from 
different kinds of data and analysis methods [Hall and Llinas, 1997]. Within the remote-
sensing community signal-level fusion is also often considered as pixel-level fusion and 
pansharpening algorithms are among the best studied methods in this domain [Zhang, 2010]. 
Higher-level fusion methods comprise both the extraction of combined features and (even 
more frequently) the consideration of multiple sensor signals in multivariate classification. 
The most commonly combined data sources in landslide research are at present multispectral, 
microwave and LiDAR sensors whereas there is theoretically no upper bound for multitude of 
combinable data sources. Some of those relatively new data sources still need to be explored 
individually in order to evaluate in depth advantages, limitations and the knowledge that can 
be gained. At the same time experts have already began to assimilate multi-sensor, multi-
temporal and multi-scale remote-sensing data for joint-interpretation of landslide processes 
[Cascini et al., 2010; Roering et al., 2009]. The large diversity of landslide processes and 
observation methods makes it difficult to formalize a comprehensive framework for the 
combination of multiple evidences. However, multivariate statistics and object-oriented 
analysis appear suitable to accommodate signals, features and decisions from a multitude of 
sources. The studies presented in the section below demonstrate how expert interpretations 
can benefit of multi-sensor remote-sensing and the efficiency of OOA to formalize 
exploitation of object attributes from multiple sensors. We note that in a strict sense several 
other studies presented in this document might be considered as data-fusion as well since in 
most cases additional sources are considered at least for the final interpretation of the obtained 
results. 
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3.4.2. Innovative case studies 
 
The following section demonstrates the integration of multi-sensor data via short summaries 
of four recently published or submitted research works carried out within SafeLand or 
through sister projects.. 
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Object-oriented change detection for landslide rapid mapping 

Application: Landslide inventory mapping 
Technique: Passive optical spaceborne images and airborne LiDAR 
Main references: Lu, P., A. Stumpf, N. Kerle and N. Casagli (2011): Object-oriented change 
detection for landslide rapid mapping  
Contributors: ITC (A. Stumpf, N. Kerle), UNIFI (P. Lu., N. Casagli) 

Abstract 

A complete multi-temporal landslide inventory, ideally updated after each major event, is essential for 
quantitative landslide hazard assessment. However, traditional mapping methods, which rely on manual 
interpretation of aerial-photos and intensive field surveys, are time-consuming and accordingly not efficient for 
generating such event-based inventories. In this study a semi-automatic approach based on object-oriented 
change detection for landslide rapid mapping, and using very high resolution (VHR) optical images, is 
introduced. The usefulness of this methodology is demonstrated on the Messina landslide event in southern Italy 
that occurred on 1 October 2009. The algorithm was first developed in a training area of Altolia, and 
subsequently tested without modifications in an independent area of Itala. 198 newly-triggered landslides were 
correctly detected, with user accuracies of 81.8% for the number of landslides, and 75.9% for the extent of 
landslides. The principal novelty of this work is (1) a fully automatic problem-specified multi-scale optimization 
for image segmentation, and (2) a multi-temporal analysis at object level with several systemized spectral and 
textural measurements.  

Keywords: OOA, change detection, landslide, rapid mapping  

1. Introduction 
 

Traditionally, landslide mapping has relied on visual interpretation of aerial-photos and 
intensive field surveys. However, for mapping of large areas those methods are too subjective, 
time-consuming and not always easy to be carried out, creating a gap that remote-sensing has 
been increasingly filling. Due to restrictions in spatial resolution, traditional optical satellite 
imagery, such as acquired by Landsat TM, has limited utility for landslide studies [Hervás et 
al., 2003]. More recently, high resolution images and LiDAR elevation derivatives have 
started to offer an alternative way for effective landslide mapping. Most researches, however, 
have been focusing on pixel-based analysis. For example, Borghuis et al. [2007] employed 
unsupervised image classification in automated landslide mapping using SPOT-5 imagery. 
McKean and Roering [2004] also successfully delineated landslide features using statistical 
measures of surface roughness from LiDAR DTM. With increasing spatial resolution, 
however, pixel-based methods have fundamental limitations in addressing particular landslide 
characteristics such as shape and surface texture. Only such additional object characteristics 
allow landslides to be further assigned to different type classes, and other features of similar 
appearance to be discarded. Such methods focusing on features instead of pixels are the basis 
of object-oriented analysis (OOA). 
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The purpose of this contribution is to introduce a 
new approach for a rapid mapping of newly-
triggered landslides using an objected-oriented 
change detection technique. The methodology aims 
at a semi-automatic and rapid analysis with a 
minimum of operator involvement and manual 
analysis steps. Compared to conventional 
approaches for landslide mapping, this approach 
benefits from (1) an image segmentation with 
problem-specified scale optimization, (2) a multi-
temporal analysis at object level with several 
systemized spectral and textural metrics, and (3) the 
integration of pre-and post-event imagery with a 
post-event high resolution LiDAR DSM. 
 
2. Data and methods 
 
The adopted methodology includes two parts: (1) 
image segmentation with multi-scale optimization, 
and (2) classification of landslide objects. The 
general methodology is shown in Figure 1. Two 
QuickBird images were used in the study, acquired 
on 6 September 2006 and 8 October 2009, with 
respectively 0.3% and zero cloud cover. For each 
image, only four multispectral bands (Blue, Green, 
Red and NIR) with a spatial resolution of 2.4 m were used, i.e. without pansharpening with 
the 0.6 m panchromatic band, to avoid artefacts introduced by image fusion and to increase 
the efficiency of computation time. Also, the 2.4 m resolution was considered as sufficient for 
the scale of the targeted landslide features. Additionally, a 1 m DTM was created from 
airborne LiDAR data acquired during 6 to 19 October 2009, shortly after the event, with a 
maximum point density of 8 points/m2 (vertical and horizontal accuracy: 15 cm and 40 cm, 1-
σ). The spectral analysis was performed with ENVI 4.7 software. The OOA and textural 
analysis were implemented in eCognition Developer 8.  

Figure 1: Training area around Altolia before 
and after the landslide event. Triggered 
landslides are highlighted exemplarily in 
yellow. 
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Figure 2: General flowchart of landslide mapping by OOA change detection. RXD: Reed-Xiaoli Detector; SAM: 
Spectral Angle Mapper; PC: Principal Component; GLCM: grey level co-occurrence matrix. 
 
The application of this approach is demonstrated by a case study in Messina Province of 
Sicily, southern Italy. During the night of 1 October 2009 intensive prolonged rainfall (ca. 
223 mm in 7 hours) affected several catchments south of Messina city. Numerous debris 
flows and shallow landslides were triggered and 31 people were reported dead. Two of the 
most damaged areas are studied, including a training area of Altolia (Figure 1, ca. 1.8 km2) for 
algorithm development, and a larger independent testing area of Itala (ca. 8.1 km2). The latter 
allows the robustness and transferability of the algorithm (without any change of ruleset and 
parameter thresholds) and the corresponding accuracy to be assessed by comparison with a 
manually mapped landslide inventory prepared from field works with subsequent 
modifications from image interpretation. 
 
2.1. Image segmentation with scale optimization 
 
Image segmentation defines the building blocks for object-oriented image analysis and, to 
ease further analysis, should aim at meaningful delineation of targeted real-world objects. 
However, considering the complex characteristics of landslides, including land cover 
variance, illumination difference, diversity of spectral behaviour and size variability, it is 
difficult to delineate each individual landslide as a single object [Martha et al., 2010a]. 
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Notwithstanding this difficulty, over- and under-segmentation can be reduced by means of a 
multi-scale optimization approach. 
The multi-resolution segmentation based on Fractal Net Evolution Approach (FNEA) 
implemented in Definiens eCognition [Benz et al., 2004] was employed for the initial 
segmentation, parameterized according to the specific needs of event-based rapid mapping of 
landslides, and incorporated in a multi-scale optimization routine. FNEA is computationally 
efficient, enables an analysis among various user-defined scales and has been used 
successfully in various remote-sensing studies. The algorithm requires the user to define 
weights for input layers (bands), as well as a scale parameter that defines the maximum 
allowed heterogeneity within individual segments. Catastrophic slope failures typically 
remove the vegetation, and result in high ratios between the Red and NIR bands. These bands 
are also the least affected by atmospheric effects and were assigned equal weights wc. The 
scale parameter is consequently defined as 
 

, 1 , 1 2 , 2( ) ( )c mrg c mrg o c o o c o
c

f w n n nσ σ σ= ⋅ − ⋅ + ⋅∑    (1) 

 
with n corresponding to the number of pixels within an object, and σc to the standard 
deviation of the pixel values within the band c. The subscripts indicate objects prior to merge 
(o1 and o2) and the respective resulting object after merging (mrg). The fact that suitable values 
for f usually need to be determined by the user in time consuming “trial and error” 
procedures, has previously been identified as one of its major limitations [Hay et al., 2003]. 
Statistical optimization methods [Dragut and Blaschke, 2006; Espindola et al., 2006a] allow 
the choice of the scale parameter to be made more objective, provided the targeted elements 
exhibit one operational scale. However, slope failures feature several orders of magnitudes in 
volume and area, which prohibit the definition of one single scale parameter. To overcome 
this difficulty, Martha et al. [in review] developed a modified version of Espindola et al. 
[2006a], by calculating a plateau objective function that has several scale parameter maxima 
to simplify segmentation parameterization and obtain a suitable multi-scale representation of 
satellite imagery. Esch et al. [2008] proposed a multi-level segmentation optimization 
procedure (SOP), which iteratively compares the spectral characteristics of image objects 
generated at multiple scales. A simplified version of this approach, which uses less spectral 
information and an automatically derived threshold, was used in this study. 
In an initial step the image was segmented with the abovementioned settings and two 
hierarchical scales (f1=5, f2=10). The mean Percentage Difference (mPD) between sub-object 
level (L1) and super-object level (L2) was calculated as 
 

1 2

2

L L

L

v v
mPD

v
−

=            (2) 

where v is the ratio of the intensities in the NIR and Red band of the respective sub- and 
super-object. Each sub-object whose mPD exceeds the mean mPD of all sub-objects by more 
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than 2σ was consequently classified as a “real” sub-object and transferred to the super-object 
level: 

1,  2
 

0,  else               
mPDmPD

real object
σ>

= 
           

(3) 

In this sense 2σmPD replaced the user defined thresholds introduced by Esch et al. [2008]. In a 
next step the similarity of transferred adjacent sub-objects (ob1 and ob2) was evaluated by 
their intensity difference in the NIR and Red band. Similar objects were merged according to 
the following condition: 

1 2 1 2
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The procedure was repeated for a total of 11 scales (15, 20, 30, 50, 70, 100, 150, 200, 300, 
500, 700), where in each step the result of the previous cycle became the sub-object level, and 
according to the next larger scale factor a number of objects was merged to create a super-
object level above. With each iteration further objects exceeding the initially derived 2σmPD 
were transferred to the next level. The complete procedure aims to provide a segmentation 
that represents sufficiently distinct objects independent of their particular scale.  
Figure 3 shows the segmentation result of the multi-scale optimization on the post-event 
imagery. Compared to the original FNEA with only one segmentation scale (Figure 3 a, b), 
image segmentation using multi-scale optimization (Figure 3 c), although still facing some 
difficulties to delineate every individual landslide, decreases the degree of over- and under-
segmentation and is able to capture better landslides as image objects among a number of 
different scales. Furthermore, the optimization runs fully automatically and liberates the user 
from a time-consuming trial and error evaluation of the optimal parameterization for the 
image segmentation.  
 

 
Figure 3: Detailed view of the image segmentation at: (a) a fixed scale of 30, (b) a specified scale of 200, (c) a 
described multi-scale optimization. Dotted ellipses are used to highlight over-segmentation (a) and under-
segmentation (b) of landslides. 
2.2. Classification of landslide objects 
 
Landslide classification in previous studies has become increasingly complex. While initial 
works were largely restricted to DN values of multispectral bands, later indices such as 
NDVI, different texture measures, DEM derivatives, and externally prepared vector layers (of 
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flow accumulation and stream networks) or shadow masks were employed [Martha et al., 
2010a]. The landslide detection approach presented here makes use of additional spectral and 
textural measurements: change detection using temporal Principal Component Analysis 
(PCA), image matching through Spectral Angle Mapper (SAM), anomaly detection by Reed-
Xiaoli detector (RXD), and textural analysis with grey level co-occurrence matrix (GLCM). 
The derivatives of PCA, SAM and RXD were calculated as separate layers and incorporated 
in OOA as features of each object that were derived during the hierarchical segmentation. 
The change detection was first carried out using temporal PCA, an image transformation of 
stacked pre- and post-event images based on eigenvector analysis of their image covariance 
matrix [Deng et al., 2008]. Temporal PCA combined all 8 bands of the pre- and post-event 
QuickBird images (4 bands each), and transformed these bands into 8 uncorrelated 
components. The components which concentrate changes have relatively smaller eigenvalues 
and can be determined by visual inspection [Radke et al., 2005]. An assessment of the 
principal components in the training area revealed that the signatures of newly-triggered 
landslides were primarily concentrated in the 4th principal component (PC4). The minor 
components beyond PC4 were mainly composed of residuals of the transformation, in most 
cases noise. In the training area, landslide candidates were preliminarily chosen from PC4 
using a membership function calculated from 10 selected samples of landslide objects. This 
membership function was then incorporated in the algorithm of classification and later 
employed without modification in the testing area. A further inspection of remaining false 
positives, such as roads, deforestation areas and sea, revealed relatively low values of those 
objects in the 2nd principal component (PC2) and values < -300 were found to be suitable 
threshold for their removal.  
Since shadows were also possibly recorded as changes in PCA, a spectral matching image 
between the pre- and post-images was created using SAM [Kruse et al.] and then imported in 
OOA. The purpose of SAM is to remove the influence of these subtle spectral changes due to 
illumination differences and viewing angle variation. The matching image derived from SAM 
estimated spectral similarity by comparing spectral angle difference in terms of image space 
between the pre- and post-event QuickBird images. For both images each pixel was 
represented by a spectrum identified as a 4-dimensional vector with specified length and 
direction. As SAM only considers the angle between the spectral vectors but not the vector 
length, it is less sensitive to changes due to illumination and shadowing [Kruse et al.]. 
Excluding objects with low SAM values (SAM < 0.09) allowed a removal of spectral false 
positives that result from subtle spectral changes in illumination as well as shadow, which 
cannot always be excluded from the change component of PCA. 
In addition, in order to remove false positives such as urban areas as well as existing outcrops 
and clear-cuts, the RXD anomaly detector[Reed and Yu, 1990] was used to estimate spectral 
anomalies based on the pre-event image, allowing the statistical removal of spectral noise. 
Assuming that urban areas, deforestation, roads and other infrastructure demonstrate spectral 
signatures significantly different from the background, RXD can be used to highlight those 
areas. In this study RXD was applied on the pre-event imagery to detect spectral anomalies 
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that existed already before the event, which are consequently excluded as newly-triggered 
landslides. A created anomaly image was then derived and employed as an additional layer in 
eCognition. Objects with large RXD values were considered as spectral anomalies and a 
threshold of RXD > 16 was defined to exclude these anomalous false positives. 
Following the spectral processing that identified landslide candidate objects, a texture analysis 
of a 1 m LiDAR DTM was performed after merging those candidates. The texture analysis 
was performed on elevation data for the purpose of analyzing topographic variability, using 
second-order statistics of the widely-applied GLCM [Haralick, 1973]. The objective is to 
remove false positives with low-frequency elevation variation, such as undisturbed or 
unfractured areas, homogenous flat surfaces, and objects with low height variation (i.e. roads 
and water bodies). Texture features calculated from GLCMmean were used in our study. 
Neighbouring pixels in all directions (0°, 45°, 90°, 135°) were considered for the GLCM 
generation, accounting for the potential different aspects of landslide objects. Objects with 
low GLCMmean values were considered to be false positives, and a threshold of GLCMmean < 
126.7 was defined. The remaining landslide candidates were then classified as final output of 
newly-triggered landslides.  

 
Figure 4 : The testing area of Itala: (a) 4th component of PCA, (b) 2nd component of PCA, (c) matching image 
of SAM, (d) result of RXD anomaly detection on pre-event image, (e) false positives (green) detected using 
GLCMmean, (f) final result of newly-triggered landslides mapping (yellow).  
 
 
3. Result and accuracy assessment 
 
The algorithm developed based on the training area of Altolia was directly applied in the 
testing area of Itala, without any changes in membership function values and defined 
thresholds. The intermediate derivatives and final outputs for the testing area are shown in 
Figure 4. To evaluate the accuracy of this approach, OOA-derived landslides were compared 
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with a manually-mapped landslide inventory. The accuracy assessment was carried out for the 
number and the spatial extent of mapped landslides (Table 6), both of which are considered 
critical in a subsequent quantitative landslide hazard and risk assessment. The number of 
landslides is useful for a quantitative estimate of the temporal probability of landslide 
occurrence, whereas the spatial extent of landslide is beneficial for the estimate of probability 
of landslide size through the landslide frequency-area statistics [Guzzetti et al., 2005]. 
 
Table 6: Accuracy assessment for the test area Itala 

 

The accuracy assessment calculates the commission and omission errors, which are measures 
of the user’s and producer’s accuracies of the mapped landslides, respectively. For the spatial 
extent of landslides a user’s accuracy of 75.9% and a producer’s accuracy of 69.9% were 
achieved. In terms of the number of landslides, user’s and producer’s accuracies of 81.8% and 
69.5%, respectively, were reached. For both number and spatial extent of landslides the 
results show a lower producer’s than user’s accuracy: specifically, ca. 31% of all manually 
mapped landslides were omitted in the OOA-based detection. This indicates an 
overestimation of false positives during their classification, accompanied with an 
underestimation of true positives obtained from the membership function of the selected 
samples. Further improvements should include a more accurate definition of these thresholds 
for classifying false positives and a more careful selection of representative samples. 

4.  Conclusion 
 
This study described a novel approach of object-oriented change detection for rapid mapping 
of newly-triggered landslides after major events, using VHR satellite images and LiDAR data. 
The approach used a transparent semi-automatic mapping technique that reduces the user 
involvement to the determination of a few thresholds for a systemized pre-designed OOA 
work process. First, a problem-specific multi-scale optimization of FNEA was proposed to 
reduce the degree of over- and under-segmentation of landslides among a number of different 
scales, avoiding a time-consuming trial and error evaluation of the optimal segmentation 
parameters that has characterised most OOA researches in the past. Second, change detection 
using image transformation of PCA was not only found to be useful for a preliminary 
selection of landslide candidates from PC4, but also enabled a removal of false positives 
directly from PC2. Third, the matching image derived from SAM allowed the detection of 
subtle spectral changes from the change of spectrum vector direction. Fourth, spectral 
anomalies detected by RXD in the pre-event image allowed the removal of false positives, 
such as landslides that already existed before the landslide event of October 2009. Finally, 
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surface texture measures based on a 1m LiDAR DTM were incorporated to remove false 
positives with low-frequency elevation variation.  
For the case study in Messina, the approach achieved user’s and producer’s accuracies of 
75.9% and 69.9%, respectively, for the extent of landslides, and 81.8% and 69.5%, 
respectively, for the number of landslides. Although the accuracy of the automatic approach 
does not entirely match what can be achieved in manual mapping, it provides an efficient 
supplement for traditional methods. The chosen spectral object features are expected to be 
useful to accommodate multispectral information from a great variety of different sensors. 
The proposed thresholds typically need further adjustment for the application in other cases, 
whereas in the presented example the visual inspection of one fifth of the study area was 
sufficient for this purpose. Also, it should not be forgotten that considerable time can be saved 
for landslide mapping because the manual drawing of landslides boundaries is replaced by 
image segmentation. Hence, for an effective landslide hazard assessment, the approach 
provides an efficient tool to retrieve lacking temporal data for an event-based landslide 
inventory, thus allowing the assessment of temporal probability and magnitude of landslide 
events for a quantitative hazard assessment. 
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Combination of airborne & terrestrial LiDAR for the structural 
analysis of landslides 

Application: Landslide characterization and monitoring 
Technique: Airborne and ground-based LiDAR 
Main references: Travelletti, J., J.-P. Malet, K. Samyn, G. Grandjean, M. Jaboyedoff (in 
press): Control of landslide retrogression by discontinuities: evidences by the integration of 
airbone- and ground-based geophysical information 
Contributors: CNRS (J. Travelletti, J.-P. Malet), BRGM (G. Grandjean) 

Abstract 

The objective of this work is to present a multi-technique approach to define the geometry, the kinematic pattern 
and the failure mechanism of a retrogressive large landslide (upper part of the La Valette landslide, South French 
Alps) by the combination of airborne (ALS) and terrestrial (TLS) laser scanning data and ground-based seismic 
tomography data. The advantage of combining different methods is to constrain the geometrical and failure 
mechanism models by integrating different source of information.  
ALS data are efficient to analysis the morphological structures controlling the landslide geometry at small scales. 
Three main discontinuities can be observed in complement to the field observations. The seismic tomography 
survey (P-wave and S-wave velocities) highlights the presence of a low seismic-velocity zone (Vp < 900 m.s-1 
and Vs < 400 m.s-1) in the crown area which is characterized by a dense fracture network at the surface and in 
depth. The surface displacements calculated from TLS data over a period of two years (May 2008-May 2010) 
allow to quantify the landslide activity at the direct vicinity of the discontinuities. An important subsidence of 
the crown area with an average velocity of 3 m.year-1 due to a sliding along two discontinuities is determined. 
The displacement directions indicate that the retrogression is controlled structurally by the pre-existing 
discontinuities.  

Keywords: slope failure, LiDAR data, seismic tomography, discontinuity, geological model 
 
1. Introduction 

 
In landslide investigations, a combination of several direct and indirect techniques is very 
often used, and several complementary ground-based and airborne-based technologies have 
been developed in the last decade to provide spatially-distributed information on the structure. 
In combination to field observations and classical geotechnical investigation, the ground-
based techniques are mainly 2D and 3D electrical resistivity and seismic tomographies 
[Jongmans and Garambois 2007] and the airborne-based techniques are mainly radar 
interferometry techniques (InSAR), Light Detection and Ranging techniques (LiDAR) and 
correlation of optical imageries [Delacourt et al., 2007; Jaboyedoff et al., 2009].  
Terrestrial Laser Scanning (TLS) and Airborne Laser Scanning (ALS) are very efficient 
techniques for characterizing the morpho-structure [Feng and Röshoff, 2004; Slob et al., 
2005; Jaboyedoff et al., 2009] and the kinematics of landslides [Rosser et al. 2007; Travelletti 
et al. 2008; Prokop and Panholzer 2009] because they provide a rapid collection of field 
topographical data with a high density of points within a range of several hundreds of meters. 
Then, the possible mechanisms affecting the slope can be deduced from the displacement 
vectors at the ground surface [Jaboyedoff et al., 2004] such as the geometry of the slip surface 
[Casson et al. 2005; Travelletti et al. 2008; Oppikofer et al. 2009].  
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In hard rock-types of failure, the morpho-structures identified at the ground surface often 
reflect the internal geometry of the deformation [Agliardi et al. 2001; Eberhardt et al. 2005]; 
at the opposite, in soft rock-types of failure, the extension in depth of the structures is more 
difficult to identify. Therefore, additional survey techniques are necessary to complement this 
lack of information in depth, such as seismic tomographies which allow to characterize 
properties such as the layering, the degree of fracturing and the stiffness of the material 
[Jongmans et al. 2009].  
Still, a major difficulty consists in interpreting and integrating all the available data in a 
coherent framework to provide a complete picture of the landslide structure. This work 
presents a multi-technique approach to characterize the structure of the upper part of the 
La Valette landslide (South French Alps) by combining airborne and terrestrial LiDAR 
surveys (ALS, TLS), geomorphological analyses and seismic tomographies. 
 
2. Data and methods 
 
2.1. History of development of the landslide and objective of the monitoring 
 
The La Valette landslide, triggered in 1982, is one of the most important large and complex 
slope movements in the South French Alps. The landslide associates two styles of activity: a 
mudslide type of behavior with the development of a flow tongue in the medium and lower 
part, and a slump type of behavior with the development of several rotational slides in the 
upper part. The landslide extends over a length of 2 km for a variable width of 0.2 km in the 
lower and medium parts, to 0.45 m in the upper part. The maximum depth varies from 25 m 
in the lower and middle parts [Evin 1992] to 35 m in the upper part [Le Mignon 2004]. The 
mean slope gradient is ca. 30° in the scarp area and ca. 20° in the mudslide area. The volume 
of the mudslide body is estimated at 3.5 106 m3. 
 
2.2 Data acquisition and processing methods\ 
 
2.2.1 Acquisition of Airborne Laser Scanning (ALS) data) 
The ALS survey was performed on July 2009 with the handheld airborne mapping system of 
the Helimap company [Vallet and Skaloud 2004]. After vegetation filtering, a point density of 
4.1 pt.m-2 has been obtained and a 0.5 m-mesh DEM from the ground surface elevation points 
has been generated with a Delaunay triangulation. The DEM was then used to calculate a 
shaded relief map and a difference map with a 10 m-mesh DEM interpolated from 
topographic contour lines before the landslide event (maximal elevation error of 10 m). 
 
2.2.2 Acquisition of Terrestrial Laser Scanning (TLS) data 
A displacement monitoring of the upper part of the landslide has been carried out by repeated 
TLS data acquisitions. The displacement monitoring device consists in a long-range terrestrial 
laser scan Optech ILRIS-3D, which principle is based on the time-of-flight distance 
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measurements using an infrared laser [Slob and Hack 2004]. Seven TLS datasets were 
acquired over the period 18 May 2008 to 27 May 2010 from the same base position (Fig. 1); 
the scanned area was orientated in the direction of the discontinuity D2 at a distance of 130 m 
from the base resulting in a mean point density of about 150 pts.m-2. Only the last return pulse 
was registered to maximize the number of points at the ground surface. 
 
2.2.3 Vegetation filtering, co-registration and georeferencing of the sequential TLS datasets 
The TLS datasets were processed and analyzed using the Polyworks v.11 software 
(InnovMetric 2009).The vegetation filter consists in an automatic selection of the points 
localized beyond a minimum height relative to a low-resolution square-grid DEM surface 
computed on the sequential point clouds. In this study, the mesh size of the low resolution 
DEM was fixed at 0.5 m and the minimum height at 0.1 m. A co-registration procedure is 
then used for aligning the sequential TLS point clouds in the same coordinate system. First a 
manual alignment procedure is used; then an automated Iterative Closest Point (ICP) 
algorithm is applied to minimize (least square method) the distance between the points 
belonging to the different sequential datasets. A good confidence is given to the co-
registration quality because of the large size of the stable area of the image used for the co-
registration (1000 m2) in reference to the size of the moving area not introduced in the co-
registration procedure (4300 m2).  For the absolute georeferencing, the ALS point clouds were 
used as a reference.  
 
2.2.4 Accuracy of the TLS point clouds 
In order to assess the accuracy associated with the TLS measurements, repetitivity 
measurements were realized on a planar stratum of the main scarp, and corresponding to the 
black marls formation (9 m2). The repetitivity analysis indicates that the measurement error of 
the TLS used in this study follows a normal distribution characterized with an average error u 
of 1.0 10-3 m and a standard deviation σ of 1.2 10-2 . 
The accuracy of co-registration procedure is given by the residual 3D misfit of the TLS of the 
18 May 2008 and the ALS survey computed on the stable part. The error in the co-registration 
was slightly higher and mainly related to the lower point density and accuracy of the ALS 
datasets. 
 
2.2.5 Displacement characterization and quantification 
The displacements are calculated by comparing the TLS datasets with the reference. Two 
methods are used to quantify the displacements from the original point clouds. The first 
method is based on shortest distance comparison of point clouds. The second uses 
displacements of Specific Points (SPs) 
The shortest distance (SD) comparison consists in computing for each point of a point cloud 
the shortest distance to its nearest neighbor in the reference point cloud. This method is 
particularly useful to detect spatially distributed changes if the direction of movement is 
unknown and to define zones with different displacement directions [Oppikofer et al. 2009].  
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Figure 1: Location of the eleven SPs in the crown area used to calculate the displacements. The SPs of the first 
acquisition are aligned on their corresponding displaced SPs for each acquisition dates. The displacement of the 
center point of each SP of the first acquisition allows to determine the displacement vector. The average misfit 
between the SP of the first acquisition and the corresponding SP is estimated at ca. 0.01 m. 

In order to determine the vertical displacement affecting the upper part of the landslide, the 
SD is constrained to compute displacement only along the vertical direction (SDv) assuming a 
tolerance angle for the vertical direction of ±10°. The results are therefore comparable to 
elevation changes computed with differential DEMs [Bitelli et al., 2004]. The accuracy of the 
vertical displacement depends on two independent factors: (i) the co-registration accuracy, 
and (ii) the computed distance D according to the tolerance angle which gives a maximal error 
Emax (Emax = D *sin(10°)). 
The observed movement of Specific Points (SPs) allows to define the direction of 
displacements. In this study, natural SPs were chosen (Figs. 1). They consist in tree stumps 
recognizable in the unfiltered sequential point clouds. In order to assess the displacements of 
the SPs in the crown area, a method similar to the ones proposed by Montserrat and Crosetto 
[2008] and Oppikofer et al. [2009] and based on a roto-translation technique is developed. 
Eleven SPs were triangulated in the plane normal to the laser viewing direction in order to 
minimize the effect of shadow zones in the interpolation (Fig. 1). To calculate the true 
displacement field, the center points of the SPs in the first acquisition is determined by 
averaging the X, Y Z positions of the points forming the SPs. Then the triangulated SPs of the 
reference are aligned on their corresponding triangulated SPs in the sequential point clouds 
(Fig. 1) Finally, the displacement vectors of the SPs are given by the initial and the final 
position of the center points of the first acquisition. Because the SPs are very well defined, the 
error mainly depends on the co-registration accuracy of the sequential point clouds.  
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3. Results 
 

3.1. Morpho-structural analysis 
 
The combined analysis of the geological field observations, the shaded relief map and the 
differential DEM map allows to propose a kinematic model of the landslide retrogression. 
Although the highly dislocated flysch formation can be considered as a relatively soft rock, 
the shaded relied analysis with the differential DEM clearly demonstrate that, at small scale, 
the key factor controlling the failure geometry and the overall stability of the mass is not the 
flysch formation itself, but the spacing and the orientation of the discontinuities composed by 
D1, D2 and D3. The upper part of the La Valette landslide can be divided in four geological 
sub-units (Fig. 2a). Since the triggering date in March 1982, the sub-unit 1 has been confined 
between the steep discontinuities D2 and D3 that constrained the landslide retrogression to the 
North-East. 

 

Figure 2: Morpho-structural maps derived from the interpretation of the Airbone Laser Scanning (ALS) survey. 
a) Major discontinuities and sub-units identified in the scarp and in the crown areas. b) Differential DEM 
highlighting the retrogression direction of the landslide for the period 1960-2009 constrained by the 
discontinuity D2 and D3. 
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 The failed mass is composed of coherent blocks (up to 50 m wide) which are sliding towards 
the main slope direction. These blocks form minor counter-slopes affected by multiple open 
tension cracks (up to 1 m in opening and in spacing) favoring water infiltration. The blocks 
are progressively dislocated and incorporated in the mudslide body downhill. The negative 
elevation difference developing along D1 indicates that the landslide retrogression to the 
North-East is limited by D1 which forces the retrogression to develop laterally to the North 
(Fig. 2b). As a consequence of the loss of buttress given by the sub-unit 1, the sub-units 2 and 
3 are progressively destabilized. The sub-unit 4 (North-West side of D3) is characterized with 
a hummocky morphology indicating a lower destabilization of the slope due to the loss of 
buttress provided by the sub-unit 3 located downhill. The downhill limit of the negative 
elevation remarkably coincides with the tectonic discordance of the Autapie sheet thrust and 
the uphill limit corresponds to the spring area. The location of the triggering area of 1982 is 
clearly identified where the elevation difference (50 m) is the maximum. 
 
3.2. Kinematics analysis 
 
Displacements calculated from the TLS datasets between the period May 2008 – May 2010 
allow to quantify the landslide activity at the vicinity of D1, D2 and D3. The SDv 
computations on the point clouds indicate 6 m of elevation difference between July 2008 and 
May 2010 leading to an average vertical displacement rate of 3 m.year-1 along D1 and D2 of 
the top of the sub-unit 1 (Fig. 3). All the displacements in the sub-unit 1 are concentrated 
between D1 and D2 where tensions cracks are developing. 
The vertical displacement rates allow to distinguish three coherent blocks 1a, 1b and 1c 
belonging in the sub-unit 1; these blocks are progressively separated by the opening of tension 
cracks and the sliding along D1 and D2. Uphill, the sub-unit 2 is also destabilized due to the 
loss of buttress provided by sub-unit 1. No displacement is detected on the South-East side of 
D2 with reference to the accuracy of the TLS datasets (less than 0.05 m). These observations 
are in agreement with the morpho-structural analysis. The displacement amplitudes of the SPs 
are far larger than the accuracy of the TLS datasets, thus giving a good confidence in the 
measurements. The SPs displacements allow to determine the true 3D displacement vectors 
characterized by an average velocity of about 4 m.year-1 (Fig. 4). 

3.3. Identification of the failure mechanism and volume estimation 
 
Because the upper part of the La Valette landslide is structurally controlled at small scale by 
planar sliding and wedge fracture configurations, a synthesis of the structural and kinematics 
analysis is done by the use of horizontal hemispherical projections (equal angle). Figure 5a 
presents the conceptual model of the failure mechanism interpreted from the integration of the 
ALS, TLS and seismic survey. 
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Figure 3: TLS point cloud comparisons according to the reference date of 18 May 2008. The displacements are 
calculated with the shortest distance comparison in the vertical direction. A negative value means that the point 
elevation is lower than the point of the reference. Several blocks are clearly individualized through time. The 
blocks 1a, 1b and 1c belong to the sub-unit 1. The block 2 belongs to the sub-unit 2. The displacement vectors of 
the SPs are also indicated.  



D4.3 Final version 
Creation and updating of landslide inventory maps, landslide deformation maps                      Date:    2011-09-05 
and hazard maps as input for QRA using remote-sensing technology 
 

 
 
Grant Agreement No.: 226479 Page 197 of 302 
SafeLand - FP7 

 

Figure 4: Cumulated displacements of the SPs calculated with the roto-translation technique. 

From a kinematical point of view, D3 and D2 define a wedge geometry with an axis direction 
and dip of 215°/30° ± 11°/5° and a maximum depth varying between 60 to 80 m which upper 
boundary is delimited by D1. Because the wedge axis does not ‘daylight’ in the slope face, 
this geometry is precluded from a strict straight-forward wedge kinematic evaluation as a 
single homogeneous block [Hoek and Bray 1981]. In other words, the wedge cannot move 
without a buttress breakout. Therefore the wedge geometry can only constrain the landslide 
retrogression direction between D2 and D3 to the North. Downhill, the mudslide body is 
acting as a buttress for the upper part. Consequently, the progression of the mudslide allows 
the development of dip-slope failures and coherent blocks start sliding along D4 laterally 
delimited by D2 and D3 
To estimate the volume of the failed mass along D4 in the sub-unit 1, an interpolation is 
carried out using the SLBL method. The discontinuities D1 (North-East limit), D2 (South-
East limit), D3 (North-West limit) and D4 (basal limit in depth) are used to constrain the 
calculation domain of the SLBL by assuming that D4 is continuous with a slightly curved 
geometry. The mechanical weak zone highlighted by the spring line at the lower limit of sub-
unit 1 (Fig. 5) is used as the Southern limit for the SLBL calculation. The unstable volume is 
calculated using a 2 m grid DEM interpolated from the ALS data. This cell size is essentially 
used for computation stability and time computing purposes. A tolerance of -0.3 defining the 
degree of curvature of the SLBL is selected in such way that the SLBL surface fits at best the 
discontinuity D4 The result gives a slightly curved surface that flattens and daylight in the 
spring line A volume of 500’000 m3 is estimated (Fig. 5b). This volume represents the highly 
fractured mass mobilized by D4 which is currently loading the underlying mudslide body. 
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Figure 5: Conceptual geological model of development of the upper part of the La Valette landslide. a) Proposed 
concept of the failure mechanism affecting the scarp and the crown areas. The morpho-structural and the 
kinematics analyses allow to highlight a planar failure mechanism along D1 and D4 confined in a wedge 
geometry delimited by D2 and D3. b) 3D view of the SLBL computation carried out to estimate the volume of 
the failed mass and to extent D4 on the whole scarp area. The ground topography above D4 has been removed.  
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4. Discussion and Conclusion 
 
The efficiency of combining ground-based (LiDAR TLS, seismic tomography) and airborne 
based (LiDAR ALS) geophysical information to characterize the landslide structure is 
demonstrated by the agreement observed between geological field observations and morpho-
structural and kinematics analyses. The advantage of combining different methods is to 
propose an interpretation adapted to the scale of the landslide which is not possible when only 
punctual measurements are used. TLS data provide high resolution point clouds of the 
topography for large scale analysis which complements ALS data more suitable for smaller 
scale analysis. The seismic tomography survey provides a spatially-distributed information on 
how the fractures are set up in depth. The integration and the interpretation of this multi-
source data allow to propose possible landslide evolution scenarios. 
The upper part of the La Valette landslide is a case of reactivation of an older landslide and is 
characterized with a succession of individual slides as it is often observed in large deep-seated 
gravitational deformations [DSGSD; Agliardi et al. 2001]. A first slide occurs and, as a 
consequence of the movement of this mass, other adjacent masses starts to move thus 
allowing the retrogression of the landslide to the North. The opening of tension cracks in the 
crown area is an evidence of the initiation of a progressive failure. However, the flysch 
formation may already have undergone some deformation before the discontinuities start to 
open. The failure may have started in the weak zone D4 and along the pre-existing fractures 
D1, D2 and D3. Furthermore, the progressive failure of successive slides is probably a 
consequence of non-uniform stress and strain conditions which prevent thus the upper part to 
a catastrophic failure. In the same way, the dip of the SLBL is very close to the residual 
friction angle of the reworked flysch (30°). Therefore the stability limit is not reached in the 
same time in the whole mass and it would be very unlikely that the unstable mass will fail in a 
single event. 
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Segment Optimization and Data-Driven Thresholding for 
Knowledge-Based Landslide Detection by Object-Based Image 
Analysis 

Application: Landslide inventory mapping 
Technique: Fusion of passive optical spaceborne images, spaceborne photogrammetic DSM, 
thematic data 
Main references: Martha, T., N. Kerle, C. van Westen, V. Jetten and V. Kumar (accpeted): 
Segment Optimization and Data-Driven Thresholding for Knowledge-Based Landslide 
Detection by Object-Based Image Analysis. 
Contributors: ITC (T. Martha, N.  Kerle, A. Stumpf) 

Abstract 

To detect landslides by object-based image analysis using criteria based on shape, colour, texture, and in 
particular contextual information and process knowledge, candidate segments must be delineated properly. This 
has proved challenging in the past, since segments are mainly created using spectral and size criteria that are not 
consistent for landslides. This paper presents an approach to select objectively parameters for a region-growing 
segmentation technique to outline landslides as individual segments, and also addresses the scale dependency of 
landslides and false positives occurring in a natural landscape. Multiple scale parameters were determined using 
a plateau objective function derived from the spatial autocorrelation and intrasegment variance analysis, 
allowing for differently sized features to be identified. While a high resolution Resourcesat-1 LISS-IV (5.8 m) 
multispectral image was used to create segments for landslide recognition, terrain curvature derived from a 
digital terrain model based on Cartosat-1 (2.5m) data was used to create segments for subsequent landslide 
classification. Here optimal segments were used in a knowledge-based classification approach with the 
thresholds of diagnostic parameters derived from K-means cluster analysis, to detect landslides of five different 
types, with an overall recognition accuracy of 76.9%. The approach, when tested in a geomorphologically 
dissimilar area, recognised landslides with an overall accuracy of 77.7%, without modification to the 
methodology. The multi-scale classification-based segment optimisation procedure was also able to reduce the 
error of commission significantly in comparison to a single optimal scale approach. 

Keywords: OOA, disaster support, feature extraction, K-means cluster analysis, segmentation, India.  

1. Introduction 

Landslide inventories associated with a single triggering event and should be generated as 
soon as possible after the occurrence of the event. Satellite remote-sensing technology has 
proven to be the best tool for generating such landslide inventories, especially with the 
availability of high resolution images [Chang et al., 2007; Chen et al., 2007; Rau et al., 2007; 
Voigt et al., 2007]. Recent advances in computer vision and machine intelligence have led to 
the development of new techniques, such as object-oriented analysis (OOA, frequently also 
referred to as OBIA or GEOBIA) for automatic content extraction of both man-made and 
natural geospatial objects [Akcay and Aksoy, 2008; Holt et al., 2009]. In OOA both the 
information content of an object, as well as process or feature knowledge, are used to classify 
features in a landscape. It is a step towards replicating the human cognitive process that 
underpins visual image interpretation. Image segmentation, a method of dividing the image 



D4.3 Final version 
Creation and updating of landslide inventory maps, landslide deformation maps                      Date:    2011-09-05 
and hazard maps as input for QRA using remote-sensing technology 
 

 
 
Grant Agreement No.: 226479 Page 202 of 302 
SafeLand - FP7 

into non-overlapping regions or segments, is the first major step in OOA, and its quality 
controls the accuracy of subsequent land cover classification [Laliberte and Rango, 2009].  
Although OOA for landslide detection has been attempted by previous workers [Barlow et al., 
2006; Martha et al., 2010a], several critical issues have not been addressed. These concern: 1) 
finding reliable means to segment landslides of different shape and size, which are also 
internally strongly heterogeneous; 2) incorporation of relative rather than absolute contextual 
criteria, in addition to spectral, textural and morphometric criteria to eliminate false positives; 
3) extracting suitable object characteristics that allow landslide-type specific identification; 
and 4) minimizing user-driven thresholding of the landslide diagnostic parameters. All of 
these points are essential for the development of a robust and transferable landslide detection 
method. 
The principal objective of this study is to optimize segment boundaries with a combination of 
different segmentation algorithms and statistical optimization techniques to delineate 
automatically landslides of variable shape and size. Another objective is to apply a data-
driven/unsupervised thresholding technique to the landslide diagnostic parameters to 
minimize human intervention. 
 
2. Dataset, area and methodology 
 
In this study Resourcesat-1 LISS-IV multispectral data were used for image segmentation and 
derivation of spectral characteristics of landslides. Along-track stereoscopic data from 
Cartosat-1were used for the extraction of a 10 m gridded digital surface model (DSM) 
[Martha et al., 2010c]. The DSM was later converted to a digital terrain model (DTM) and 
used for extraction of topographic parameters. We used these two primary datasets for the 
automatic detection of landslides in two perennially affected but geomorphologically diverse 
areas in the Himalayas (Table I). The methodology was developed in the Okhimath area and 
tested in the Darjeeling area. While summer images were used for Okhimath area, winter 
images were used for Darjeeling area, thus, the sensitivity of landslide detection by OOA to 
seasonal variability in image acquisition was also explored (Table I). 
 
Table 1: Description of study areas 
 Okhimath, Western  Darjeeling, Eastern  
 Himalayas, India  Himalayas, India  

Centre location  30° 33' 07" N /  26° 54' 06" N /  
(Latitude/Longitude)  79° 06' 32" E  88° 15' 00" E  

Date of LISS-IV scene  01 April 2007  13 January 2004  
Date of Cartosat-1 scene  06 April 2006  28 January 2006  
Maximum and minimum 
elevations  

2620 m and 1047 m 2024 m and 373 m  

Size of study area  29 km2  35 km2  
Major landslide types  Rock slide, debris slide and 

debris flow  
Rock slide, debris slide  
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Size of largest and smallest 
landslide  

0.321 km2  and 0.001 km2  0.086 km2  and 0.001 km2  

Major land use/cover  Barren rocky land, forest  Built-up area, forest and tea  
categories  and terraced cultivation  plantation  

Major event Okhimath landslide  Ambootia landslide (1968)  
 (1998) –38 fatalities  – severe loss to cash crops  
  such as tea and oranges.  

 
3.1. Knowledge-Based Detection of Landslide 
 
In this study, we detected landslides by adapting the methodology proposed by [Martha et al., 
2010a], which identifies landslides initially along with its false positives and later eliminates 
them sequentially. A new sub-module for the objective determination of parameters for 
optimal segmentation was added existing sub-modules were modified to partially replace 
static thresholds with dynamic thresholding methods and relative rather than absolute criteria 
for identification of false positives. The modified approach for the detection of landslides was 
separated into four sub-modules, and implemented using eCognition (Figure 1). 

 
Figure 1: Concept diagram for knowledge-based detection of landslide using OOA by segment optimisation and 
data driven thresholding. 
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3.2 Optimization of Segments (Sub-module 1) 
 
To find optimal multiple scales objectively we used Espindola et al.’s [Espindola et al., 2006] 
objective function, which is a combination of intra-segment variance and Moran’s I index. By 
varying the scale factor and maintaining uniform weights for spectral and shape 
heterogeneities, objects at 50 different scales were created for estimation of the objective 
function. Mean and variance were calculated using the brightness value of objects, which is 
the average of DN values of the three multispectral bands. The maximum value of the 
objective function is a statistical indicator of optimal image segmentation [Espindola et al., 
2006]. However, a single optimal scale is insufficient to address the relationship between the 
spatial structure of an image and the structure of a landscape, although Gao et al. [Gao et al., 
In Press] reported the highest classification accuracy with single scale segments. 
To obtain multiple optimal scales instead, we created a simple plateau objective function: 
 

max( ) ( , )F plateau F Iν σ= −        (1) 
 
where ( )max, IF ν is the maximum value and σ  is the standard deviation of objective function 
calculated for 50 different scales, respectively. 
The plateau objective function value was used to demarcate the lower boundary of the plateau 
in the curve created by plotting scale factors and objective functions in x and y axes, 
respectively (Figure 3). The hypothesis for the plateau objective function is that the peak 
values are close to the maximum value of the objective function, therefore, the balance 
between under- and over-segmentation still remains. Furthermore, the peaks are distinct from 
each other and locally optimal with respect to their immediate neighbor (Figure 3). 
 
 
3.3 Extraction of Landslide Candidates (Sub-module 2) 
 
The segments created with the scale factor corresponding to the first peak of the plateau were 
used to begin the landslide detection process. This scale factor has the highest potential to 
outline landslides of small size in comparison to other scales identified in the plateau 
function, and also captures the boundary of large landslides occurring in a contrast poor 
environment, such as within barren rocky land. Landslide candidates were extracted using a 
NDVI threshold. To standardize NDVI across image dates, pixel values were converted to top 
of the atmospheric reflectance by correcting for sensor gain and sun position [Song et al., 
2001]. 
Although an initial guess can be made about the number of existing classes by analyzing the 
image, we used a two-step clustering algorithm to determine the existing classes in an 
objective manner relying on the Schwarz Bayesian criterion [Schwarz, 1978]. The cluster 
centers in NDVI data obtained by K-means algorithm were used as thresholds to identify 
landslide candidates. 
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3.4. Identification of False Positives (Sub-module 3) 
  
Generally, false positives are of different sizes and, therefore, need to be linked to one of the 
optimal scales (Figure 2). This increases their chances of successful classification using 
texture and shape-based criteria, statistical neighbourhood conditions, such as the maximum 
mean difference to neighbour for the identification of built-up areas, and the minimum mean 
difference to neighbour for identification of barren agricultural land. Small and narrow 
features in hills, such as roads, built-up areas and rivers, were identified with scale factor 
corresponding to the first peak, while larger features, such as barren rocky lands and 
topographic shadows, were identified with higher scale factors corresponding to subsequent 
peaks. The scale to feature link was established by a quick onscreen reconnaissance of the 
spatial structure of the segments with respect to the landscape features (Figure 2). Finally, K-
means cluster analysis was used to derive thresholds for the classification of false positives. 
 
3.5 Classification of Landslides (Sub-module 4) 
 
At this stage further segment refinement based on chessboard segmentation was applied to 
eliminate small patches of vegetation and barren rocky land which had not been detected in 
the larger segmentation scale. Classification of landslides based on material (rock, earth or 
debris) was implemented using a relative border criterion. For example, landslides with high 
relative border to barren rocky land were classified as rock slides. Finally, landslides were 
segmented using terrain curvature for classification based on failure mechanism (rotational or 
translational). For example, rock slides with a negative curvature value represent a concave 
rupture surface, and thus were classified as rotational rock slides. 

 
Figure 2: Spatial structure of the segments for most common landslide false positives (uncultivated agricultural 
terraces (AL), rocky land (RL), road (Rd), river (R) and river sand (RS)) in hilly areas. (a) and (b) show 
segmentation with high and low scale factors, respectively 
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3.6 Transferability of the Method 
 
To verify the transferability of the proposed method to unknown areas, we tested the approach 
developed for Okhimath in the geomorphologically dissimilar Darjeeling area. We first 
calculated the accuracy in the Okhimath area to test the effectiveness of the proposed method 
to detect landslides, and then estimated the accuracy of the Darjeeling area to verify its 
transferability. Assessment of accuracy was carried out by comparing the manually and 
automatically prepared landslide inventory maps excluding landslides affected by shadow or 
vegetation cover in the satellite image and merging multiple polygons of large active 
landslides in the reference inventory map. The accuracy of the detected landslides was 
assessed in terms of their total number and areal extent. 
 
4. Results 
  
Using the plateau objective function value derived through eq. 1, the plateau boundaries for 
Okhimath and Darjeeling were determined as 1.061 and 1.078, respectively (Figure 3). These 
peaks exceeding the plateau correspond to the optimal scales in the respective images. 
Landslides and false positives were characterised using a DEM and its derivatives (slope, 
flow direction, curvature and hillshade), and parameters calculated from the optical image 
data (NDVI, brightness). These diagnostic parameters and their thresholds obtained from K-
means clustering were used to create a rule set in eCognition (Table 2). This rule set was 
developed using the data of the Okhimath area and the results are explained in the following 
section. 

 
Figure 3 Objective function for Okhimath (a) and Darjeeling (b), indicating the optimal segmentation scales (the 
peaks shown with arrows) in the plateau area above dotted line that were used in the OOA process. 
 
4.1 Training Area (Okhimath) 
 
The peak scales (Figure 3a) from the objective function (13, 16 and 23) to segment the 
Okhimath image. Scale factor 13 was used to create objects to begin the landslide detection 
process. As illustrated in figure 4b, the next optimal scale factor (16) produced large size 
objects and was less suitable to delineate the landslide. Scale factor 13 was also used to 
classify false positives, such as roads, river channels and built-up areas, using the criteria 
given in table 2. The other two scales, 16 and 23, produced large size objects that were linked 
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to correspondingly larger false positives, such as river sands, barren agricultural and rocky 
lands, and shadow areas.  

 
Table 2: Characteristic features, object properties and thresholds (O: Okhimath, D: Darjeeling) used for the 
identification of false positives and landslide types. 

Target feature  Characteristic 
features  

Object characteristics (Threshold value)  Object nature  Thresholding method  

Landslide 
candidates  

NDVI  Mean NDVI (O≤0.22612, D≤0.2455)  Spectral  K-means clustering  

False positives       

Water  Drainage  Stream order (O>5, D>4)  Contextual  Spatial  

 NIR band  Mean difference to neighbours (O≤15, 
D≤10)  

Spectral  K-means clustering  

 Slope  Mean angle (O and D ≤ 10º)  Spatial  Existing knowledge  

Built-up area  Red band  Local maxima (mean difference to 
neighbours) 

Spectral  Statistical  

 Red band  GLCM contrast (O ≥ 64, D ≥ 68)  Spatial  K-means clustering  

 Slope  Mean angle (O and D ≤ 27º)  Spectral  Existing knowledge  

 Water class  Not close to river water (O and D >50 m)  Contextual  Existing knowledge  

Road  All three bands  Compactness (polygon) (O and D ≤ 0.2)  Shape  Existing knowledge  

 Flow direction  Flow direction and Main direction 
difference (O and D: between 80 to 105)  

Contextual  Existing knowledge  

 All three bands  Length/Width (O and D ≥ 3)  Shape  Existing knowledge  

 Red band  GLCM contrast (O and D ≥ 30) Spatial  K-means clustering  

River sand  Water class  Close to river water (O and D = 0 m)  Contextual  Existing knowledge  

 DEM  Relief (O and D ≤ 30 m)  Contextual  Existing knowledge  

Shadow  All bands  Brightness (O ≤ 40.18288, D ≤ 
53.91474)  

Spectral  K-means clustering  

 Hillshade  Mean Hillshade (O ≤ 57.92239, D ≤ 
14.46621)  

Spectral  K-means clustering  

Agricultural land  Red band  Local minima (mean difference to 
neighbours)  

Spectral  Statistical  

 All three bands  Asymmetry (O and D ≤0.9)  Shape  Existing knowledge  

 Slope  Mean slope (O and D ≤ 30º)  Spatial  Existing knowledge  

Barren land  NDVI  Mean NDVI (O ≥ 0.18425 and D ≥ 
0.32378)  

Spectral  K-means clustering  

Escarpment  NDVI  Mean NDVI (O ≥ 0.22612 and ≤ 0.3088, 
D ≥ 0.32378)  

Spectral  K-means clustering  

 Slope  Mean slope (O and D ≥ 45)  Spatial  Existing knowledge  

Landslide type          

Shallow 
translational rock 
slide  

All three bands  High asymmetry  Shape  Process knowledge  

Debris slide  Agricultural land 
class  

High relative border to agricultural land 
For Peer Review  

Contextual  Statistical  

Debris flow  All three bands  Large length  Shape  Process knowledge  

Rotational rock 
slides  

Barren land and 
escarpment classes  

High relative border to barren land and 
escarpment  

Contextual  Statistical  

 Curvature  Very low mean curvature  Spatial  Process knowledge  

Translational rock 
slides  

Barren land and 
escarpment classes  

High relative border to barren land and 
escarpment  

Contextual  Statistical  

 Curvature  Near zero mean curvature  Spatial  Process knowledge 



D4.3 Final version 
Creation and updating of landslide inventory maps, landslide deformation maps                      Date:    2011-09-05 
and hazard maps as input for QRA using remote-sensing technology 
 

 
 
Grant Agreement No.: 226479 Page 208 of 302 
SafeLand - FP7 

 
Figure 4: Important stages towards successful landslide recognition and classification illustrated for a large 
landslide in Okhimath. a. Actual boundary of landslide. b. Segmentation with scale factor 16 was unable to 
delineate the left and right flanks (shown with dashed lines) of the landslide. c. Flanks were correctly delineated 
with scale factor 13. d. Detection of landslide candidates with NDVI threshold. e and f. Chessboard 
segmentation to refine the landslide candidate objects by removing impurities such as vegetation. g. 
Resegmentation with scale factor 13, and elimination of barren lands from landslide candidates. h. Merging 
again into a single object after removal of all false positives, and classification into rock slide. i. Segmentation of 
rock slide using terrain curvature. j. Classification of rock slide into rotational rock slide (rrs) and translational 
rock slide (trs) using a curvature criteria. 
 
Landslide candidates were identified on segment level 13 using an NDVI threshold derived 
from K-means clustering. This is the first and most important step in the landslide detection 
process, as it eliminates most of the objects from the subsequent analysis. Using a two-step 
auto clustering analysis, four natural clusters of NDVI were obtained. These clusters are 
related to the major land cover classes of this area, and are also quite distinct (Figure 4d). 
Subsequently, K-means clustering was carried out with K=4 and cluster centers were 
calculated. Objects classified with the cluster center value of 0.22612 could delineate all dark 
areas of the NDVI image. Therefore, 0.22612 was selected as the threshold for landslide 
candidates (Figure 4d).  
Shadow is another common false positive present in all hilly areas. As opposed to the single 
parameter threshold used for landslide candidates, they were eliminated by simultaneous 
thresholding of two spectral parameters (brightness and hillshade), also derived using K-
means clustering. Use of these two parameters was necessary as they complement each other, 
i.e. landslides originating from mafic or ultramafic rocks generally have low brightness and 
thus similarity with shadow. However, they have high hillshade values (if they are in shadow 
free area), based on which they can be differentiated from shadow. 
Majority of the thresholds were determined objectively, however, those that are not scene 
specific but knowledge- or process-driven, were determined interactively (Table 2). It is 
important to classify rocky and non-rocky areas accurately, since they are used for the 
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classification of landslides based on material type. These features were classified using 
texture, brightness difference to the surrounding objects, and slope. The sub-module 2 of 
Martha et al. [2010a] was modified, and made more generic and data-driven, by removing the 
necessity of a threshold, and inserting a contextual information requirement, the maximum 
mean difference in the red band between an object and its neighbours for the detection of 
built-up areas, and the minimum mean difference to detect agricultural lands.  
Finally, after removal of all false positives, landslides were classified based on their material 
and movement using shape and contextual diagnostic features as listed in table 2. In total five 
landslide types were identified in the Okhimath area. 
 
4.2 Testing Area (Darjeeling) 
 
The procedure developed using satellite data and a DEM for Okhimath was tested in the 
Darjeeling area without any changes to its structure. The optimal scales obtained from the 
plateau objective function (12, 14, 19 and 22, Figure 2b) were used for the segmentation. The 
analysis began by segmenting the LISS-IV image with the lowest optimal scale i.e. 12. Using 
K-means clustering, the NDVI threshold (0.2455) for the classification of landslide candidates 
was obtained. Similar to Okhimath, a small scale factor was able to delineate the boundary of 
all landslides completely, with the resulting oversegmentation subsequently being reduced by 
object merging based on NDVI thresholds (Figure 5).  
Optimal scales were linked to false positives using onscreen image reconnaissance as 
described for Okhimath, the only subjective part left in the entire procedure. Roads and rivers 
were identified with scale factors 12 and 14, respectively. Scale factors 19 and 22 were used 
to identify river sands, shadows and barren rocky lands, respectively. All the three types of 
landslides present in the Darjeeling area could be detected by this procedure and are shown in 
figure 7. 

 
Figure 5: Effect of segment optimisation on a large landslide in the Darjeeling area. a. objects created with scale 
factors 19. b. objects created with scale factor 12 and classified using NDVI threshold (outlined in red) were able 
to outline the landslide. c. merging of segments of the large landslide into a single object, and classification into 
translational rock slide based on morphometry and context. 
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Fig. 6: In total 11 landslides of three different types were correctly recognised using OOA in the Darjeeling area. 
Dotted lines in insets (a) and (b) show the reference landslide inventory. 
 
5. Accuracy assessment 

 
The overall recognition accuracy (includes correctly and incorrectly classified landslides) for 
the total extent of landslides in Okhimath and Darjeeling was 76.9% and 77.7%, respectively. 
The accuracy in the Okhimath area is higher than that achieved (69.9%) with our previous 
method (refer to table 4 of Martha et al. [2010a], where only one scale factor selected by trial-
and-error was used. The overall classification accuracy for extent of landslides in Okhimath 
and Darjeeling was 74.4% and 77.7 %, respectively.The higher accuracy of the landslide 
extent assessment, a critical parameter in landslide susceptibility analysis, resulted from better 
outlining of landslides and identification false positives as per their corresponding size, using 
multi-scale optimization.  
The overall recognition accuracy for total number of landslides in the Okhimath and 
Darjeeling areas was 73.3% and 68.7%, respectively. Although the accuracy in Okhimath is 
lower than the overall recognition accuracy (76.4%) achieved in our previous work (refer to 
table 3 of Martha et al. [2010a]), it greatly reduced the percentage of incorrectly recognised 
landslides, i.e. error of commission (16.6%), compared to 56.4% achieved before (Figure 7b). 
The lower overall recognition accuracy of shallow translational rock slides (60% in both 
areas) mostly contributed to the 26.6% and 31.2% errors of omission of the total number of 
landslides in Okhimath and Darjeeling, respectively, in comparison to the contribution from 
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other landslide types, a trend similar to what we observed in our previous study in the 
Okhimath area. This is due to the fact that they are small and narrow, and commonly occur in 
barren rocky lands, thereby offering limited local contrast that is essential for segment 
delineation. 

   
Figure 7: Comparison of the accuracies obtained using segments derived from three different methods. (a) and 
(b) show the total area and number of landslides, respectively, recognized in Okhimath, (c) and (d) in Darjeeling. 
 
To investigate if the enhanced accuraciey figures can be attributed to the multi-scale analysis 
the entire analysis for both areas with segments created using only the highest single scale 
indicated by te objective function. The result showed that, although the overall recognition 
accuracy has not changed much for both areas, the error of commission has significantly 
increased for both the total number and the extent of landslides (Figures 7c and 7d). 

6. Conclusion 
 

In this study we created a plateau objective function using Moran’s I index and intra-segment 
variance that allowed an objective selection of the optimal scales required for identification of 
false positives. Dynamic parameter thresholds estimated by K-means cluster analysis were 
used in several classification steps of the OOA. This work showed that multi-scale based 
identification of false positives helped in achieving a higher overall recognition accuracy 
(76.9%) of landslides compared to a single scale, and significantly reduced the error of 
commission affecting out earlier results. Segment optimization using the result of an 
intermediate classification was able to delineate small landslides and flanks of large 
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landslides, and outline landslides as individual objects, thereby allowing the application of 
process-specific criteria to classify them based on material and movement characteristics. 
Apart from multi-resolution segmentation, chessboard segmentation was used to remove 
landslide impurities, and refine landslide boundaries. To summarize, the segmentation 
techniques that were applied to optimize segments for landslide recognition and classification, 
and that in combination constitute the novelty of this research, include: 1) multi-scale segment 
optimization with a plateau objective function; 2) chessboard segmentation to remove 
landslide impurities such as vegetation within large landslides; and 3) multi-resolution 
segmentation with terrain curvature to classify landslides based on failure mechanism. K-
means clustering proved to be effective in estimating thresholds for landslide diagnostic 
parameters that were used either individually or simultaneously.  

The segment optimization procedure was conceived with four sub-modules, created using 
eCognition software, and which proved effective and robust in delineating segments for both 
small and large landslides embedded in different land cover units. The advantage of the 
methodology demonstrated in this paper is that optimal scales and thresholds were selected in 
an unsupervised manner. The approach could detect five and three types of landslides in 
Okhimath and Darjeeling areas, respectively. While the structure of sub-modules 1, 2 and 4 of 
the ruleset was kept unchanged for landslide detection in both the areas, a semi-supervised 
approach was adopted for sub-module 3, i.e. to link the optimal scales interactively to false 
positives through rapid image reconnaissance of the segmentation results. This remains a 
limitation of our method, although it was substantially improved from our previous approach 
by incorporating relative identification criteria and automatic thresholds.  
The low recognition accuracy of total number of shallow translational rock slides (60% in 
both areas) is another limitation of our approach. These slides are generally small and narrow 
(width < 3 pixels) and could not be delineated as a segment. We address this in a separate 
study by further refining the objects with more shape control than colour, although 
insufficient resolution of the satellite image could be one of the reasons for their limited 
detection. Good overall recognition accuracy of the method indicates that it can be of 
potential use for the preparation of event-based landslide inventory maps, vital for the 
planning of short and long term disaster management strategies in mountainous areas. More 
illustrations and the rule set will be available on our website (www.itc.nl/OOA-group). 
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Synergetic use of UAV-based optical remote-sensing and 
Terrestrial LiDAR for landslide monitoring 

Application: Landslide monitoring 
Technique: Passive optical airborne and ground-based sensors 
Main references: Niethammer, U., M. R. James, S. Rothmund, J. Travelletti, and M. Joswig 
(in press): UAV-based remote-sensing of the Super-Sauze landslide: Evaluation and results. 
Contributors: CNRS (J. Travelletti, S. Rothmund) 

Abstract 

Unmanned aerial vehicles (UAVs) equipped with digital compact cameras can be used to map landslides quickly 
and at a high ground resolution. Images taken by a radio-controlled mini quad-rotor UAV of the Super-Sauze, 
France landslide have been used to produce a high-resolution ortho-mosaic of the entire landslide and digital 
terrain models (DTMs) of several regions. The UAV capability for imaging fissures and displacements on the 
landslide surface has been evaluated, and the subsequent image processing approaches for suitably georectifying 
the data have been assessed. 
For Super-Sauze, horizontal displacements of 7 to 55 m between a high-resolution airborne ortho-photo of May 
2007 and a UAV-based ortho-mosaic of October 2008 have been measured. Fixed areas of persistent 
deformation have been identified, producing fissures of different distributions and orientations comparable to 
glacial crevasses, and relating directly to the bedrock topography. The UAV has demonstrated its capability for 
producing valuable landslide data but improvements are required to reduce data processing time for the efficient 
generation of orthomosaics based on photogrammetric DTMs, in order to minimise georeferencing errors. 
  
Keywords: landslide, remote-sensing, UAV, DTM, terrestrial LiDAR, fissures 
 
1. Introduction 

 
The objective of this work is to investigate the use of radio controlled unmanned aerial 
vehicles (UAVs) for acquiring high-resolution measurements (DTMS, orthophotographs) on 
landslides in order to assess they dynamics at high temporal frequency, and assess 
quantitatively changes in the surface texture and roughness (fissure pattern, trajectory of 
blocs, etc).  
The mini-UAV used has the advantage over traditional methods of allowing flexible 
deployments capable of acquiring both high-temporal and spatial resolution data. Radio 
controlled UAVs are less expensive with significantly lower operational costs than manned 
aircraft and, in recent years, mapping and remote-sensing applications of UAV-systems have 
become more common [Everaerts, 2008]. In the late 1970’s the use of fixed wing remote 
controlled aircraft was investigated for motorized UAV photogrammetry experiments 
[Przybilla and Wester-Ebbinghhaus, 1979] and, a quarter century later, Eisenbeiss et al. 
[2005] generated the first high-resolution digital terrain models (DTMs) using autonomously 
controlled helicopter UAVs. 
Currently, a range of UAV-systems are in use, for example, motorized paragliders [Jütte, 
2008], blimps [Gomez-Lahoz and Gonzalez-Aguilera, 2009], kites [Aber et al., 2002] and 
balloons [Fotinopoulos, 2004]. However, many such systems are strongly affected by wind 
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and could only be used infrequently or with difficulty in mountainous terrain. The availability 
of small high-quality digital cameras has now enabled radio controlled UAV-systems to 
represent affordable and practical remote-sensing platforms, but data analysis challenges 
remain. For example, in order to utilize standard aerial photogrammetric processing software, 
UAV-acquired photographs should be acquired in an optimal block configuration alignment, 
with internally stable camera-systems and minimal optical distortion. These restrictions have 
previously required the use of fixed-lens SLR cameras, expensive autopilot UAV navigation 
systems, and driven the development of dedicated photogrammetric software packages 
[Eisenbeiss et al., 2005]. 
In 2006, relatively stable quad-rotor helicopter systems became available as open source 
public domain projects [Mikrokopter, 2010]. These systems are suitable for adaptation for use 
in alpine terrain and are low-cost when compared to commercially available UAV-systems. 
The goal of this study was to evaluate a UAV-system developed in-house for landslide 
research. The potential and limitations of such a system, with preliminary results acquired at 
the Super-Sauze landslide, France [Weber and Herrmann, 2000; Malet, 2003] are discussed.  
For the Super-Sauze landslide, a specific aim was to consider the UAV capability for imaging 
fissures and displacements at the surface and to assess the subsequent image processing 
approaches for suitably georectifying the data. For full coverage of the landslide area, a plane-
rectified ortho-mosaic of UAV imagery has been constructed and comparisons were made 
with a previously acquired traditional aerial ortho-photo. However, the use of plane-
rectification can result in significant errors in regions of rugged topography, so we explore the 
application of close range photogrammetry software to enhance the results with a 
photogrammetric DTM. The close range software can handle convergent imagery from non-
metric cameras much more readily than traditional aerial photogrammetry applications, 
facilitating DTM generation from UAV imagery. The quality of the digital terrain model is 
assessed by comparison with data from a terrestrial laser scanner (TLS). 
 
2. Data and Methods 
 
2.1. Description of the UAV acquisition system 
 
The UAV-system developed in-house is a low-cost quad-rotor (Figure 1) that has been 
previously demonstrated to be capable of flying in difficult alpine terrain. When compared to 
conventional helicopters, quad-rotor systems are more stable with less in-flight vibration and 
have the mechanical advantage of not requiring a large, variable pitch rotor-unit. Our system 
was derived from an open source project [Mikrokopter, 2010] and enhanced for landslide 
studies. A robust aluminium flight frame was developed and the payload of the UAV-system 
was increased by using more powerful motors and some modifications of the flight control 
software. The UAV is stabilized by inertial measurement units (IMUs), including three 
acceleration sensors, three gyroscopes, a three-axis compass, and a pressure sensor, regulated 
by basic PID (proportional integral differential) loops. Flight endurance (hovering time of the 
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UAV-system) is up to 12 minutes using a lithium polymer battery with a capacity of ~5.0 Ah. 
Overall UAV-development took about one man year in order to meet all the requirements for 
operation in difficult alpine terrain. 
 

 
Figure 1: Quad-rotor system for remote-sensing and its main characteristics. 
 
For image acquisition, a light weight low-cost digital compact camera (Praktica Luxmedia 
8213) which supports manual camera settings was used. For all flights the sensitivity, zoom 
and the aperture were set to fixed values in order to achieve exposure times <1/800 s and the 
largest visual angle. Without an auto-pilot navigation system to control image acquisition, all 
photographs were taken in an automatic image-series mode, acquiring one image every three 
seconds to ensure full coverage. 
Our choice of a radio controlled UAV requires the presence of a highly skilled pilot and limits 
the operational area to the control range of a few hundreds of metres. There are also 
challenges related to the relatively small payloads, UAV-reliability and the restricted radio-
bandwidth for ground communication [Colomina et al., 2007]. Although the use of an 
autonomously controlled UAV could significantly increase the operational area, autonomous 
control is less able to cope with unpredictable conditions such as gusty winds than an 
experienced operator. Furthermore, the use of autonomous UAVs is tightly regulated by civil 
aviation and security authorities, preventing their practical deployment. Our experience is 
that, particularly in alpine terrain, UAV-based image acquisition requires significant technical 
skill and a good pilot. 
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2.2. Data acquisition 
 
In October 2008 a UAV flight campaign was carried out covering the whole sliding area (850 
× 250 m) of the Super-Sauze landslide, acquiring 1486 airborne photographs. Flight planning 
was carried out in-situ, where the area to be imaged could be observed and suitable locations 
for takeoff and landing could be identified. 
After launch, the quad-rotor was guided to an imaging flight altitude of ~200 m to provide a 
ground resolution of approximately 0.06 m per pixel. However, manual control of the UAV 
led to deviations in flight altitude between 100 m and 250 m, with corresponding ground 
resolutions between 0.03 m and 0.08 m. At the imaging altitude the UAV was hovered for 
about 30 seconds before vertical landing was initiated. After each flight, the area covered by 
the acquired photographs was verified on the camera directly.  
To enable the images to be georeferenced, 199 targets (~0.4 × 0.6 m rectangular coloured 
sheets to ensure visibility) were deployed over the landslide as ground control points (GCPs), 
and their centroid locations determined with differential GPS (DGPS). Deploying such a 
number of GCPs requires significant effort but was deemed an appropriate precaution for the 
initial assessment of UAV use over the landslide. Although long-term DGPS observations of 
these targets could allow for accurate displacements analysis at each GCP without the need 
for any UAV flight, such point data could potentially miss areas of interest and would not 
provide opportunity for the analysis of surface features such as fissures. 
To enable a comparison of the UAV results with ground-based data, the topography of the 
toe-region of the slide was also mapped with a terrestrial laser scanner (TLS). The TLS 
instrument, an Optech ILRIS-3D, was used from a single site at a mean distance of 150 m 
from the toe (Fig. 2A), producing an average data density of 23,000 points per m2 in the 
image plane perpendicular to the line of sight, and a total of 3 ×106 points. The laser logged 
the last return from each line of sight in order to minimize undesired returns from vegetation. 
A stable area outside of the landslide was also included within the scanned area in order to 
georeference the TLS data. This georeferencing was carried out using a DTM acquired by 
ALS on 22 May 2007 with a ground resolution of 0.2 m. 
 
2.3. Data processing 
 
To allow comparison of the UAV data with these other sources, two processing procedures 
were carried out; generation of an ortho-mosaic and DTM construction of selected areas using 
close range photogrammetry techniques. 
 
2.3.1 Production of ortho-mosaic 
The best 59 suitable UAV-acquired images were selected for mosaic processing. In a first 
step, optical (barrel) distortion was corrected using the common third degree polynomial 
approach [Niethammer et al., 2009, 2010]. In a second processing step, each image was 
rectified onto the plane GCP coordinates using one of four non-parametric rectification 
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approaches (projective transformation, piecewise affine transformation and polynomial 
transformations of the 2nd and 3th order). For each image, the rectification approach was 
selected in order to achieve the best result and depended on the relief variation and the 
number of observed ground control points. In irregular terrain these approximate 
transformations will not fully account for the effects of relief and residual misalignments 
within the ortho-mosaic have to be accepted.  
Finally, all rectified photographs were merged to a uniform high-resolution orthomosaic with 
a spatial resolution of 0.04 m. Automatic colour correction was carried out within OrthoVista 
software [OrthoVista, 2010] by applying a global tiling adjustment function which compares 
overlapping areas of images and then computes radiometric adjustment parameters for each 
image. All images were then merged into a seamless mosaic by an adaptive feathering image 
blending algorithm within OrthoVista (Fig. 2A). 
 
2.3.2 Production of photogrammetric DTM 
DTM generation was carried out using VMS close range photogrammetry software [VMS, 
2010] and an image matching algorithm, GOTCHA [Gruen Otto-Chau] from the University 
College London [Otto and Chau, 1989]. Three regions of the Super-Sauze landslide were 
analyzed (Fig. 2). 
For DTM creation, observations of ground control points in the selected images were used to 
calculate initial camera orientations (positions and pointing directions) using a preliminary 
estimated camera model defining principal distance only. The photogrammetric network 
produced was densified by incorporating additional tie points generated with GOTCHA, 
which is a dense matching algorithm capable of generating patch-based (rather than feature-
based) matches for each pixel of an image. 
The output was then reduced to a few thousand matches distributed over the images and a 
self-calibrating network adjustment was carried out in which the errors in the GCP positions, 
camera orientations and the camera model (principal distance, two radial and two tangential 
distortion components, principal point offsets and an affinity term) were simultaneously 
minimized. 
The optimized locations for the 16 GCPs in the toe-region (figure 3A) showed RMS position 
residuals (from the original GCP coordinates) of 0.023, 0.018 and 0.019 m in x, y, and z. As is 
standard in rigorous close range photogrammetry procedures, VMS calculates the 
measurement precision within the photogrammetric network [Cooper and Robson, 2001]. 
Average precisions for all the GCPs were 0.079, 0.079 and 0.185 m in x, y, and z, reflecting 
mean image residuals of 1.4 pixels in both x and y. 
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Figure 2: Ortho-mosaic of the Super-Sauze landslide of October 2008 with ground control points (GCPs), 
horizontal surface displacement vectors colour coded by average movement velocity (May 2007 – October 
2008), different areas of dynamics and sedimentation, locations of the DTMs and the position and field of view 
of the terrestrial laser scanner survey. B-D: DTM 1-3 overlain with an ortho-image. E: Alignment error between 
the TLS DTM (October 2008) and airborne LiDAR DTM (May 2007) of the stable topography adjacent to the 
toe-region of the landslide. 
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3. Results 
 

3.1. Ortho-mosaic and DTM quality 
 
Errors within the georeferencing of the ortho-mosaic were quantified by comparison of all 
199 GCP locations to their DGPS-measured locations. Within the boundary of the sliding area 
the mean error was 0.5 m, with a standard deviation of 0.57 m and a maximum misalignment 
of 3.9 m. However, large misalignments between 2.0 m and 3.9 m were only located at the 
margins of the landslide and, away from the boundary, accuracies can be considered to be 
~0.5 m. In the toe-region, the ortho-mosaic could also be compared with UAV images ortho-
rectified within VMS software using the photogrammetry-derived DTM 3 (Fig. 2D). 
Horizontal offsets were determined by image matching (using GOTCHA) and show similar 
magnitudes to those of the full ortho-mosaic GCPs (Fig. 3A), with the largest values located 
near the slide boundary. 
 

 

 

Figure 3: Comparison between the ortho-mosaic (A) and a DTM-derived ortho-photo (B) of the toe region of the 
landslide. Horizontal offsets determined by GOTCHA image matching. 
 
The quality of the photogrammetric DTM was assessed by subtracting the overlapping TLS 
DTM (Fig. 4A, 4B). In the vertical direction the RMS difference is 0.31 m although 
maximum deviations reach +3.44 to -4.08 m.  
The most significant errors are induced by some small trees and bushes, the effects of which 
could not be reliably removed from the photogrammetric DTM. However, vegetation 
correction on landslides has been managed by applying non-uniform vegetation-height 
surfaces [Martha et al., 2010], but such procedures were not warranted in this work because 
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the most significant vegetation errors were localised and occurred only at the margins of the 
DTMs. Further sizable differences occur on the steepest sides of large blocks. On the northern 
faces, where the block surface is nearly perpendicular to the TLS line of sight (Fig. 2A), the 
TLS point cloud is much denser than the photogrammetric one. For example, figures 5C and 
5D show that in the steep front of the toe, the point cloud of the TLS is two orders of 
magnitude denser than the point cloud of the photogrammetry. 

 
Figure 4: DTM precision analysis at the toe-region of the landslide. A: texture of the toe-region, B: elevation 
differences between TLS and photogrammetric DTM, C: point-density of the photogrammetry data, D: point-
density of the TLS data. 
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Figure 5: DTM artifacts resulting from shadow zones in TLS data and vegetation obscuration in the UAV-based 
DTM. 
 
However, the TLS can only observe one side of a block and the other, shadowed, side has to 
be interpolated. In shadow areas, the zero point density results in predicted elevations that 
reflect the interpolation technique used rather than any real measurements (Fig. 5C). 
Nevertheless, such regions are observed fully by the UAV. 
In regions of low vegetation, such as grass or small shrubs, it is difficult to completely remove 
vegetation returns from the TLS point cloud and this can lead to some small artifacts in the 
TLS DTM (Fig. 5A, 5C). On the other hand the photogrammetric approach can fail in areas of 
low image contrast or shadowing (for example, on some large blocks, Fig. 5A; 5B). Dense 
vegetation cannot be penetrated and can give poor or no results during image matching 
(Fig. 5A, 5B). It can be concluded that both DTMs must be regarded with caution. 
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3.2. Kinematics analysis 
 
Our UAV-based displacement analysis of the Super-Sauze landslide was carried out by 
comparing the ortho-mosaic from October 2008 with the aerial ortho-photo from May 2007 in 
a geographical information system (GIS). Horizontal displacements were measured by 
identifying corresponding features and areas, such as rocks, stones and parts of vegetation 
patches in both images (Fig. 6A, 6B). In principle, such analysis could be attempted by 
automated image matching (using correlation-based methods), but due to the resurfacing 
changes over the 17-month interval, this would be ineffective with the available image pair. 
However, automated image matching should be possible between UAV-derived ortho-
mosaics acquired at shorter interval periods, and the use of more sophisticated object- or 
feature-based matching like scale-invariant feature transform (SIFT) could also be 
investigated [Leprince, et al., 2008; Lowe, 2004]. 
Horizontal displacements between 7 and 55 m ± 0.5 m, as well as varying displacement 
directions were detected (Fig. 2A). However, several regions could not be successfully 
analyzed due to a lack of clear surface features in both image sets (area 3 in Fig. 2A). 

 

Figure 7: Horizontal displacement analysis of the toe-region between the airborne ortho-photo of May 
2007 (A) and the UAV-based ortho-mosaic of October 2008 (B). 

4. Discussion and conclusion 
 
In this study it has been shown that radio controlled low-cost UAVs can deliver high 
resolution remote-sensing data on landslides. The proposed UAV-based remote-sensing 
approach shows significant potential for the production of high-resolution ortho-mosaics and 
DTMs that enable the analysis of fissures and surface displacements. The manual data 
acquisition and processing procedures used require a significant amount of time, but progress 
is already being made to streamline data processing by using automated targetless structure-
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from-motion and multiview-stereo approaches to derive the topographic surface. Integrating 
such DTM generation (which includes camera model refinement), and possibly also 
vegetation removal, into the ortho-mosaic pipeline, will significantly reduce errors in the final 
ortho-mosaic. 
The comparison between the plane-rectified UAV ortho-mosaic and an earlier orthophoto 
revealed horizontal displacements between 7 and 55 m ± 0.5 m, representing daily average 
displacements rates in the range of 0.1 to 0.01 m ± 1 mm per day, between May 2007 and 
October 2008. Despite the high-resolution of the imagery, errors resulting from the plane-
rectification degrade the georeferencing accuracy to ~0.5 m over most of the landslide. 
Although acceptable when calculating displacement rates over periods of a year, errors of this 
magnitude would be restrictive for analyses over shorter intervals, and hence could limit the 
usefulness of the UAV’s capability to regularly acquire data. 
Consequently, ortho-rectification using photogrammetric DTMs is advised. A DTM of the 
toe-region of the Super-Sauze landslide, constructed using close range photogrammetry 
software, has been compared with TLS data of the same area giving an RMS of height 
difference values of 0.31 m. Although TLS-based point clouds are denser than 
photogrammetric derived point clouds, TLS data are subject to shadowing due to the oblique 
view point. Such shadows are minimised in nadir UAV-acquired images and a large scale 
data acquisition can be obtained more effectively by UAV. 
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4. REMOTE-SENSING DATA AS INPUT FOR QUANTITATIVE 
HAZARD AND RISK ASSESSMENT 

 
4.1. DIRECT USE OF REMOTE-SENSING INFORMATION FOR 

HAZARD ANALYSIS 
[NGU] 

Landslide hazard assessment is a complex process that requires many input parameters 
[Aleotti and Chowdhury, 1999; Guzzetti et al., 1999; van Westen et al., 2006; van Westen et 
al., 2008]. Consequently it is not recommended to base hazard assessments directly and only 
on remote-sensing data. However, the preparation of probabilistic maps, the calibration of 
physically-based and deterministic models and the quantification of all involved factors can 
be very time consuming; emergency situations sometimes require rapid hazard assessments 
based on remote-sensing data only, but these have to be coupled with expert judgment. Such 
heuristic methods or expert evaluation approaches [Leroi, 1996] lead to qualitative landslide 
hazard or risk assessments. These assessments are nonetheless useful to focus more detailed 
investigations, make quantitative hazard assessments, initiate monitoring and eventually 
implement early-warning systems. Some examples of the direct use of remote-sensing data in 
landslide hazard analysis and early-warning are presented here. 

4.1.1.  Back-analysis of past landslides 
 
Back-analyses of past landslides provide essential input parameters for investigations of 
present landslides, for example the geotechnical parameters of the sliding mass, the structures 
and mechanisms involved in past landslides, the volumes of past events, etc. The findings of 
such back-analyses can then be applied to present slope instabilities (for numerical 
simulations) and for hazard assessment using, for example, volume-frequency relationships 
[Dussauge-Peisser et al., 2002; Dussauge et al., 2003]. 

The geotechnical and geomechanical properties of the rock or soil mass involved in a 
past landslide event are generally assessed using numerical simulations, for landslides 
[Delmonaco et al., 2002], rockslides [Brideau et al., 2006; Kveldsvik et al., 2008], submarine 
landslides [L’Heureux et al., 2010 ], but also their propagation [Hungr and Evans, 1996; 
Jaboyedoff et al., 2009b]. Remote-sensing techniques can provide necessary input data for 
such back-analyses, especially airborne laser scanning (ALS) and terrestrial laser scanning 
(TLS) for the present topography, aerial photographs and satellite images for the extent of 
landslide scars and deposits, ground-based or offshore geophysical methods for the location 
of the sliding surface and the deposit thickness, and multi-beam echosounders for the 
bathymetry. 

Landslide mechanisms can also be directly assessed based on the morphology of the 
exposed scar using high-resolution digital elevation models (DEMs) created from ALS and 
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TLS. This approach has proven particularly useful for landslides in hard rock slopes, 
structures delimiting a rockfall [Abellán et al., 2006], structures forming the basal failure 
surface of a rockslide [Jaboyedoff et al., 2009a; Pedrazzini et al., 2010], surface roughness of 
the basal failure surface [Oppikofer et al., in press], but also gives valuable information on 
rotational landslides ([Jaboyedoff et al., 2009c]. 

Landslide back-analysis also includes the assessment of the landslide volume, for 
example by computing the difference between the pre-event topography and the post-event 
topography. Therefore, the pre-event topography needs to be reconstructed, which can be 
realized using aerial photographs [Coe et al., 1997; Dewitte et al., 2008; Mora et al., 2003; 
Prokesová et al., 2010] or topographic maps [Evans et al., 2001] acquired before the event. 
Other surface reconstruction techniques are based on the continuity between the present 
topography outside the scar area and the pre-event topography within the landslide area. This 
can be achieved by following and completing the contour lines of the present-day topography 
over the rockslide scar [Brückl and Brückl, 2006; Rouiller et al., 1998] or by interpolation 
methods like inverse distance weighting or kriging [Gorum et al., 2008]. The sloping local 
base level (SLBL) technique is an alternative interpolation technique and can be applied to 
create the pre-event topography in the landslide scar and deposits areas [Jaboyedoff and 
Derron, 2005; Jaboyedoff et al., 2004; Travelletti et al., 2010]. Oppikofer [2009] used an 
ALS-DEM to reconstruct in a 3D environment the pre-event topography of large rockslides. 

4.1.2. Initiation of detailed investigations and continuous monitoring 
 
Detailed field investigations of landslides and installation of continuous monitoring systems 
are costly and can generally not be made on all landslides in a given region. Remote-sensing 
techniques help to focus detailed field investigations and monitoring on sites that show signs 
of activity (displacements, small shallow landslides or small rockfalls within a larger 
landslide, decrease in vegetation cover etc.). 

Satellite-based InSAR is now widely used at regional to country scale to detect and 
map landslides [Lauknes et al., 2010], and in some cases even to monitor their displacements 
[Colesanti and Wasowski, 2006; Colesanti et al., 2003; Squarzoni et al., 2003]. InSAR 
displacement maps are very useful to highlight areas with recent slope movements and 
supplement field investigations by focusing the work on active landslide sites [Henderson et 
al., 2011] (see also 3.2. of this deliverable, D4.1 Part C: 4, and D4.1: Case studies 11&17 ). 
At a more local scale, differences between multi-temporal DEMs also allow the detection of 
topographic changes due to slope movements [Baldi et al., 2008; Casson et al., 2003; Coe et 
al., 1997; Evans et al., 2001; Fischer et al., 2011; Mora et al., 2003; Prokesová et al., 2010]. 
Such multi-temporal DEMs can be created from various remote-sensing datasets, especially 
by ALS and aerial photographs. Since ALS-DEMs have only been produced regularly since 
the end of the 1990s, only few areas have up to now been covered twice by ALS, but their 
number will likely increase in the future [Jaboyedoff et al., 2010]. Nonetheless, ALS-DEM 
can already be compared to other DEMs created from topographic maps or from aerial 
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photographs [Dewitte et al., 2008; Fischer et al., 2011]. The archive of aerial photographs 
allows retracing the landslide displacements in time until the 1920s to 1930s, when first 
surveys were made in many countries. 

At local, site-specific scale, ground-based remote-sensing techniques are very 
appropriate to detect landslide displacements: ground-based InSAR [Casagli et al., 2010; 
Tarchi et al., 2003], terrestrial laser scanning [Abellán et al., 2009; Abellán et al., 2010; 
Jaboyedoff et al., 2009c; Oppikofer, 2009; Oppikofer et al., 2008; Pesci et al., 2011; Teza et 
al., 2007; Travelletti et al., 2008] and terrestrial photogrammetry [Lim et al., 2005]. TLS and 
terrestrial photogrammetry provide point clouds of the topography and enable the 
measurement of landslide displacements in 3D and not only along the LOS (as with InSAR) 
or the elevation axis (as with multi-temporal DEMs). This is one of the main advantages of 
these ground-based techniques together with the high spatial resolution of the data in 
comparison with InSAR and ALS. The interpretation of the 3D displacement pattern of a 
landslide allows the construction of geometric instability models, which increase the 
understanding of the failure mechanisms [Oppikofer et al., 2008; Oppikofer et al., 2009]. On 
the other hand, ground-based InSAR has the capability to detect smaller displacements than 
TLS and terrestrial photogrammetry. 

Changes in vegetation cover are obvious signs of landslide activity and are readily 
detected on multi-temporal aerial or terrestrial photographs [Casson et al., 2003; Jaboyedoff 
et al., 2009b]. Another sign of landslide activity is rockfalls at the front or along the limits of 
a larger unstable slope. Such rockfall activity and precursory displacements in a rock mass are 
indications of possible large failures, which enable the spatial prediction of future rock slope 
failures based on TLS and terrestrial photogrammetry [Abellán et al., 2009; Abellán et al., 
2010; Lim et al., 2005; Oppikofer et al., 2008; Pedrazzini et al., 2010; Rosser et al., 2007]. 

4.1.3. Hazard assessment in emergency situations 
 
Emergency situations after a landslide event necessitate quick response and assessment of the 
new hazard situations. This is especially critical for major triggering events, such as 
earthquakes or extreme precipitations that can trigger dozens to thousands of landslides (Cai 
[Caine, 1980; Chigira et al., 2010; Crosta and Frattini, 2003; Guzzetti et al., 2008; Harp and 
Crone, 2006; Keefer, 1984; Sepúlveda et al., 2010]. 

At a regional scale, satellite images can be acquired shortly after a major triggering 
event and used to make an inventory of new landslides and landslide dams [Dunning et al., 
2007; Harp and Crone, 2006; Sato and Harp, 2009]. This inventory is important for the 
organization of emergency assistance of the affected population (extent of landslides, 
accessibility of communities by transportation routes etc.). The inventory is even critical for 
the hazard assessment of landslide dams, which could breach and flood the downstream area 
with potential catastrophic consequences. Due to the relatively low longevity of landslide 
dams [Evans, 2006], their early detection is crucial in order to initiate remedial works and to 
control dam breaches. 



D4.3 Final version 
Creation and updating of landslide inventory maps, landslide deformation maps                      Date:    2011-09-05 
and hazard maps as input for QRA using remote-sensing technology 
 

 
 
Grant Agreement No.: 226479 Page 229 of 302 
SafeLand - FP7 

Rapid hazard assessments may be necessary following a major landslide event, 
especially in situations when only parts of the unstable slope failed. In such cases it is 
essential to assess the volume of the remaining unstable part and to measure potential 
displacements within it. TLS and ALS can be used to quickly create a new post-event DEM 
[Jaboyedoff et al., 2009c], which can then be compared to pre-event DEMs in order to 
compute the volume of the landslide event [Oppikofer et al., 2008]. Post-event DEMs are also 
very helpful for the design of remedial works on the landslide [Jaboyedoff et al., 2009c]. Most 
in-situ instrumentation on a landslide will likely be destroyed by the landslide event. The 
installation of new in-situ instrumentation is time consuming and may not be feasible due to 
the danger posed by the remaining unstable mass. Therefore are remote-sensing techniques 
that can be operated from safe positions in the surroundings of a landslide the only suitable 
monitoring technique [Oppikofer et al., 2008]. Ground-based InSAR and TLS can be quickly 
deployed and can provide measurements of the post-event displacements within a few hours 
to days. 
 

4.2. INDIRECT USE OF REMOTE-SENSING INFORMATION FOR 
HAZARD AND RISK MODELS 

4.2.1.  Remote-sensing inventory maps as inputs to hazard models 
[ITC+CNRS] 

Quantitative assessment of landslide hazard and risk can be performed at various scales, 
whereas landslide inventories with sufficient spatial and temporal coverage are especially 
important for assessments at medium scales [Guzzetti et al., 2005; van Westen et al., 2006; 
van Westen et al., 2008]. Hence, the focus is here on remote-sensing techniques that target 
mapping at regional scale, the quality of resulting inventory maps and remaining issues for 
their integration of those inventories in probabilistic hazard assessment. Landslide hazard 
assessment infers from knowledge about location, size and timing of the landslides [Guzzetti 
et al., 2005] which all can be potentially derived with remote-sensing technologies. 

To determine location and extent of landslide (especially after of large triggering 
events) aerial photographs are being progressively replaced with high and very-high 
resolution satellite images. The increasingly higher spatial and temporal resolution of optical 
satellite observations enables (i) more detailed and reliable identification of affected areas, (ii) 
an immediate response minimizing the risk of omission (due to landslide traces fading away 
with time), and (iii) repeated observations potentially leading to multi-temporal inventories, 
which can be easier related to specific events [Saba et al., 2010]. Event-based mappings in the 
direct aftermath of large earthquakes also became an indispensable information source for the 
assessment of seismic hazards [Harp et al., 2010]. For the assessment of seismic hazards (and 
landslide hazards similarily) it is generally desirable to map not only the landslide locations 



D4.3 Final version 
Creation and updating of landslide inventory maps, landslide deformation maps                      Date:    2011-09-05 
and hazard maps as input for QRA using remote-sensing technology 
 

 
 
Grant Agreement No.: 226479 Page 230 of 302 
SafeLand - FP7 

but also the locallys affected areas; a task that becomes much more feasible using VHR 
images. 

Multi-temporal inventories are still available for relatively few thoroughly studied 
areas [Guzzetti et al., 2009; Jaiswal and van Westen, 2009; Witt et al., 2010], whereas at the 
same time lot of archived and continuously acquired imagery still remains unexploited to 
create multi-temporal inventories for other areas. Even if time-series from field-surveys are 
readily available VHR optical images may reveal a considerable additional number of 
landslides for a given area [Fiorucci et al., in press] and should be considered for visual 
interpretation. 

There is a large number of studies which proposed, applied and compared automated 
techniques for landslide mapping with optical data [Barlow et al., 2006; Borghuis et al., 2007; 
Cheng et al., 2004; Danneels et al., 2007; Di et al., 2010; Gao and Maro, 2010; Hervás et al., 
2003; Joyce et al., 2009; Lu et al., 2011; Marcelino et al., 2009; Martha et al., 2010c; Nichol 
and Wong, 2005; Park and Chi, 2008; Rau et al., 2007; Whitworth et al., 2005; Yang and 
Chen, 2010] but surprisingly little work has been dedicated to the use of automatically 
mapped inventories as input for hazard or susceptibility assessment. One exception is a study 
presented by Park and Chi [2008], whereas still (presumably considerable) manual editing 
was involved to refine the automatically mapped landslides. Not all studies on automated 
mapping included proper accuracy assessments, but those who did showed mapping 
accuracies between approximately 30% [Marcelino et al., 2009] and 90% [Yang and Chen, 
2010] depending largely on the complexity of the ground conditions but also on the employed 
techniques and image types. It is well documented that traditional mappings comprise a large 
degree of subjectivity leading to sometimes incomparable inventory maps for the same area, 
which translate into diverging and hence uncertain spatial patterns of the slope susceptibility 
[Ardizzone et al., 2002; Galli et al., 2008; Wills and McCrink, 2002]. From this view point it 
might be in many cases problematic to evaluate the results of automatically derived 
inventories against traditional techniques and the quality of the reference data generally needs 
special attention. Detailed manual mappings such as presented by Galli et al. [2008] and 
Fiorucci et al. [in press] demonstrate that thorough interpretation of VHR images reveals 
many additional landslides and yields more accurate maps. However, such detailed 
inspections are not feasible over wide areas [Galli et al., 2008] emphasizing again the need 
for more automated techniques. In analogy to the cited studies evaluating discrepancies 
among different manual mappings, an evaluation of the discrepancies and uncertainties of 
automated approaches, and their impact on the hazard assessment appears recommendable. To 
the best of our knowledge such research has not been carried out yet and integrated 
approaches which use satellite based inventories as input for susceptibility assessment are still 
rather sparse [Park and Chi, 2008; Sarkar and Kanungo, 2004].  

Airborne LiDAR techniques show particular strength for the mapping of old landslides 
under forest [Van Den Eeckhaut et al., 2007] but can also be used to support the mapping of 
newly triggered shallow landslides [Ardizzone et al., 2007; Lu et al., 2011]. There seems to be 
a general agreement that LiDAR based mappings yield more accurate and complete 
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inventories than field surveys alone [Ardizzone et al., 2007; Schulz, 2007; Van Den Eeckhaut 
et al., 2007]. Resulting inventories have been employed for efficient susceptibility models 
whereby the LiDAR derived terrain model provides also valuable input to extract influential 
topographic variables [Van Den Eeckhaut et al., 2009; Van Den Eeckhaut et al., 2006]. The 
acquisition of airborne LiDAR datasets is still rather costly and for a frequent updating of 
landslide inventories other techniques may remain more feasible. With an eye toward analysis 
of such datasets over larger areas some automated mapping techniques [Booth et al., 2009; 
Glenn et al., 2006; McKean and Roering, 2004] with partially promising accuracies [Booth et 
al., 2009] have been proposed. It appears desirable to compare susceptibility models based on 
automated techniques with those based on manual mappings to assess the sensitivity of the 
spatial susceptibility before further inferences on the hazard are drawn. 

Most remote-sensing techniques described in this section target the detection and mapping 
of the areal extent of landslides. The involved volumes are an important parameters for the 
hazard assessment, but are typically not easily available and in many cases might only be 
estimated as a function of the landslide area [Guzzetti et al., 2009]. Direct measurements of 
volumes or displacements over wider areas are in principal possible with multi-temporal 
airborne photogrammetry and multi-temporal LiDAR [Chen et al., 2006; Dewitte et al., 2008; 
Scheidl et al., 2008; Tsutsui et al., 2007]. For volume estimates with multi-temporal DSM 
derived from SPOT stereopairs Tsutsui et al. [2007] reported uncertainties of around 34% and 
Martha et al. [2010c] reported a maximal deviation of 18% using stereopairs. Compared to 
relatively rough volume estimates based on the areal extent [c.f. Guzzetti et al., 2009] this 
might already yield improved accuracies for further calculations such as event magnitudes. 
Generally, further validation studies are needed to assess the uncertainties of the volume 
estimates over larger areas and for specific events and initially reported volumes should be 
regarded with caution [Kerle, 2002]. 

4.2.2. Remote-sensing displacement and volume maps as inputs to hazard models 
[UNISA+AMRA] 

It is well known that urban planning and risk mitigation strategies may obtain a significant 
enhancement from landslide susceptibility and hazard zoning maps [Cascini et al., 2005; Fell 
et al., 2008]. However, the reliability of the zoning maps depends on several factors; among 
these the accuracy of landslide inventory plays a fundamental role. A well-developed 
landslide inventory involves the location, classification, volume, travel distance, state of 
activity and data of occurrence of landsliding in a given area. Focusing the attention on the 
landslide characterization, its accomplishment can be challenging when large areas are 
detected and no extensive monitoring systems are available. To this end, the analysis of 
displacement maps can provide useful information on the state of activity and on the 
boundaries of the affected areas; moreover, displacement measurements can also be used for 
the detection of unmapped phenomena. 



D4.3 Final version 
Creation and updating of landslide inventory maps, landslide deformation maps                      Date:    2011-09-05 
and hazard maps as input for QRA using remote-sensing technology 
 

 
 
Grant Agreement No.: 226479 Page 232 of 302 
SafeLand - FP7 

The scientific literature reports several applications of remote-sensing derived displacement 
maps to be used within the landslide risk management framework [Fell et al., 2008]. 
Hereafter some examples are described. 

Many methods for landslide mapping make use of digital elevation models (DEM) of 
the same area from two different periods in order to visualize where displacement due to 
landslides has taken place. The superficial movements of unstable slopes can be derived from 
the comparison of various types of documents (topographic maps, aerial photographs, 
cadastral maps, DEMs), which represent instantaneous views of an unstable site on various 
dates [Malet et al., 2002]. As a result, the historical development of the phenomenon on 
scales ranging from 1:10,000 to 1:1,000 [Engel, 1986; EPFL, 1985; Maquaire, 1990; Martin 
and Weber, 1996; Powers and Chiarle, 1996] can be derived. For instance, referring to 
terrestrial or air stereophotogrammetry, 3-D coordinates of ‘‘moving’’ points are provided 
thus allowing both the realization of morphological maps and the generation of DEMs and 
cross-sections along the unstable slope [Oka, 1988; Weber and Herrmann, 2000]. More 
recently, high resolution data from Quickbird, IKONOS, PRISM (ALOS) and CARTOSAT-1 
are able to produce highly accurate DEMs that can be useful in automatic detection of large 
and moderately large landslides. Nowadays for many areas the use of Google Earth data is a 
good alternative since many parts of the world are covered by high resolution imagery which 
can be combined in GIS with a Digital Elevation Model to generate stereoscopic images, that 
are essential in landslide interpretation [van Westen et al., 2008]. 

A further application of these techniques is the so called change detection that, via the 
exploitation of sets of digital aerial photos taken in different periods, enables a quantitative 
analysis of the change in slope morphology and also the retrieval of movement vectors 
[Chandler and Moore, 1989 ; Gili and Sendra, 1988]. In this regard, several examples can be 
found in the scientific literature concerning: La Clapiere landslide in France [Casson et al., 
2003], the Tessina landslide in Italy [van Westen and Getahun, 2003]; the Ancona landslide 
[Cotecchia, 2006]; the active portion of Slumgullion earthflow in Colorado [Powers et al., 
1996]; etc.  

Remote-sensing derived displacement maps can also be obtained via repeated GPS 
campaigns, as a complement to geodetic methods [Gili et al., 2000]. One of the first examples 
in literature concerned the Vallcebre landslide (Eastern Pyrenees), see Gili et al. [2000]. In 
this case data from periodic controls on 30 GPS benchmarks were used to complement 
measurements of inclinometers and wire extensometers. Particularly, during 14 campaigns 
(December 1995 to February 1998), carried out with Real Time Kinematics and Fast Static 
procedures [Gili et al., 2000], horizontal displacements up to 1.6 m and lowering of the 
landslide surface of up to 0.35 m were observed [Corominas et al., 2005]. Other examples of 
GPS monitored landslides are: the Super-Sauze earthflow (France) [Malet et al., 2002]; the 
Sackung phenomenon affecting the urban area of Maratea (Southern Italy) [Berardino et al., 
2003]. 

Airborne Laser Scanner (ALS) can provide high resolution topographic information, 
depending on the flying height, point spacing and type of terrain [Glenn et al., 2006; McKean 
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and Roering, 2004] and also the combination of ALS and Terrestrial Laser Scanner (TLS) for 
has been proven successfully for the quantification of landslide volumes [Hsiao, 2004]. 
Although there pass generally years between two ALS acquisitions it is possible reconcile 
displacement by tracking significant objects from one time step to another [Baldo et al., 2009; 
Roering et al., 2009]. Because high temporal and spatial resolutions are desirable for surveys 
landslide TLS is used more frequently for monitoring. A reconstruction of the 3D 
displacement field of individual landslides is possible via the cross-correlation of muli-date 
laser scans [Daehne et al., 2011; Travelletti et al., 2011].The application of TLS displacement 
and volumes measurements in hazard assessment may comprise observations of increased 
rockfall frequency before final failures [Rosser et al., 2007], the detection of precursory 
displacement [Abellán et al., 2010; Oppikofer et al., 2008] or estimates of the speed rock wall 
retreats [Lim et al., 2010]. It has been demonstrated that the latter can also be performed with 
ALS if sufficiently dense time-series are available [Young et al., 2011].  

When dealing with studies over large areas the use of advanced satellite techniques, 
which involve data achieved by Synthetic Aperture Radar (SAR) [Gabriel et al., 1989], can 
be extremely useful. In particular, the differential SAR interferometry (DInSAR) can 
complement with traditional topographic techniques as well as GPS and LiDAR to obtain 
measurements of ground surface displacements, providing comparable accuracy while being 
less expensive and time consuming. A valuable enhancement in these techniques was 
obtained via multipass DInSAR techniques [Ferretti et al., 2001; Lanari et al., 2004]. 
However, several limiting factors need to be properly taken into account [Colesanti and 
Wasowski, 2006] such as: displacement data represent only one dimensional projection in the 
Line Of Sight [Manzo et al., 2006; Rocca, 2003]; the ambiguity of phase measurements 
implies the possibility of using A-DInSAR data only for the measurement of displacements of 
landslides ranging from extremely to very slow according to the velocity classification of 
[Cruden and Varnes, 1996]; limited versatility in terms of (a.) positioning of the measurement 
points and (b.) revisiting time; very limited coverage in vegetated areas.  

On the whole, the SAR case studies described in the scientific literature highlight that 
with reference to the detection/mapping of slow-moving landslide phenomena the main 
benefits regard: the definition of the boundaries of already detected mass movements; the 
definition of the states of activity; the detection of previously unmapped unstable areas. 

Latest trends in this kind of applications pursue the development of procedures for the 
use of A-DInSAR data at different scales of analyses. In particular, when dealing with studies 
over large areas an integrated approach can be followed with the help of i) geomorphological 
analyses [Cascini et al., 2010; Farina et al., 2006]; ii) information derived from sensors 
operating at different wavelengths [Strozzi et al., 2005]; iii) the mixture with SAR remote-
sensing and optical images [Casagli et al., 2005] and iv) the cross-comparison with damage 
survey dataset [Cascini et al., 2008]. As for studies at the scale of the single phenomenon, the 
integration with ground-based monitoring techniques and advanced landslide displacement 
monitoring as well as the use of corner reflectors [Gili et al., 2009; Novali et al., 2005] is 
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absolutely necessary and must be pursued in order to overcome, for instance, constraints 
related to the absence of natural benchmarks in vegetated areas. 

4.2.3.  Remote-sensing derived predisposing factors maps as inputs to hazard 
models 

A. Topographic data and derivates 
[ITC] 

The 'slope' in slope instability analysis already indicates the importance of topographical 
information in landslide hazard assessments, from regional studies to detailed inventories on a 
single landslide or hill slope. To date Digital Elevation Models (DEM) and derivative 
products derived from them are the main providers of topographical data used crucial as input 
in landslide modeling. Where originally contour lines obtained by digitizing from 
topographical maps provided the main source for DEM construction, today a wide variety of 
DEM data sources is available. This has even led to the development of a new work field in 
geomorphology that deals with the quantified analysis of landforms using DEMs: 
geomorphometry or digital terrain analysis (see website www.geomorphometry.org). 

 

 
Figure 14: Relationship between the mean slope by LiDAR point-cloud spacing and resulting 
topographic raster [Chow and Hodgson, 2009]. 
 

http://www.geomorphometry.org/�
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• Data sources for DEM generation 
A variety of data sources for DEM construction does exist. They range from ground-based 
surveys (using GPS technology), contour maps derived from topographical maps, to remote-
sensing-based data sources such as stereoscopic satellite imagery, interferometric RADAR 
and Laser scanning (LiDAR). Focus here is on remote-sensing-based DEM data sources. 

For quite some time already medium resolution DEMs can be generated from 
stereoscopic satellite images such as from SPOT (SPOT4-DEM is 10*10 m, SPOT5-DEm is 
5*5 m) ) and ASTER (ASTER-DEM is 15 or 30 m spatial resolution). Higher resolution 
DEMs are generated from for example Quickbird and IKONOS (DEM resolution is 1- 4 m) 
and CARTOSAT-1 (CARTOSAT-DEM is 2.5*2.5 m). Although vertical resolution of these 
DEMs is typically 1 meter, the accuracy of elevation values may vary quite a bit. Especially 
in mountainous regions elevation value accuracy may decrease, amongst other by 
stereoscopic errors introduced in the DEM generation process. Furthermore, some of these 
systems provide DEMs free at cost and with global coverage (the ASTER Global-DEM at 
30*30 m, see at http://asterweb.jpl.nasa.gov/gdem.asp), whereas others are expensive 
(IKONOS-DEM) or do not (yet) provide global coverage.  

During a space shuttle mission in 2000 a DEM with near to global coverage was 
generated. This so called Shuttle Radar Topographic Mission (SRTM) collected elevation 
data at 30*30 meter spatial resolution using so called radar interferometry. To date for most 
part of the globe SRTM-DEM data resampled at 90*90 meter resolution are available; 30*30 
meter SRTM data are available for the USA and an increasing number of regions. 
RADARSAT and ENVISAT are other examples of spaceborne sensor systems using radar 
interferometry for DEM construction. 

Laser scanning or LiDAR is a relatively new technology and a data source for high 
resolution DEM construction. As such using LiDAR a so called ' digital surface model' 
(DSM) is produced that contains information of objects on the earth surface such as 
vegetation stands, buildings and infrastructure. Digital preprocessing and manual editing to 
remove these objects and surface elements is required to construct a LiDAR-DEM from such 
a DSM. Advantage of the DSM, however, is that it can provide relevant information about 
elements at risk in landslide risk assessment. A major advantage of LiDAR is that DEMs with 
a very high spatial resolution (up to sub meter level) can be produced. This also holds for 
vertical resolution (up to centimeter level). Hence, LiDAR-DEMS can be used in detailed 
landslide assessment. So far, mainly airborne LiDAR-DEMs are used in landslide assessment, 
see also below. 
 

• Digital elevation data in landslide hazard assessment 
Standard functionality for working with DEMs is available in almost all general purpose GIS 
software. In this way, DEM-derived parameters including slope gradient, slope aspect and 
slope shape can be computed without any problem. An overview of DEM derivate products 
and their applicability in landslide modeling is provided by van Westen et al. [2008]. In 
heuristic landslide analysis of larger areas at small scales hillshading maps derived from a 
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DEM can be used to support physiographic classification, to delineate differences in internal 
relief and drainage intensity. In statistical landslide modeling at medium scale DEM 
derivatives including slope gradient, slope direction, slope shape (profile curvature, plan 
curvature), and slope length serve as input parameters. Large scale deterministic modeling 
uses local drainage line direction, flow path, slope gradient, slope morphology and other 
DEM derived parameters to quantify landslide initiation and runout. DEMs derived by 
contour line interpolation from large scale (detailed) topographic maps are probably the most 
commonly used input for hazard assessment. Care should be taken in cases where the 
elevation model represents only the post-landslide topography. Especially for the assessment 
of landslide types which considerably changed the slope morphology it is recommend to use 
pre-failure topographic information or at least reconstruct the previous surface [Gorum et al., 
2008]. 

However high resolution DEMs generated from LiDAR data are increasingly used as 
input for detailed landslide studies and modeling exercises. In a landslide study in Honduras 
van Westen et al. [2008] were able to estimate the average building height of elements at risk 
by using the difference between elevation measurements from a LiDAR-based DEM (1.5*1.5 
m resolution) and a contour line-based DEM representing the earth surface elevation (at 
2.5*2.5 meter). 

LiDAR data can also be used to produce high spatial resolution hillshade (shaded 
relief) maps. Since they provide a detailed impression of topography and topographic 
differences, these can be used in the detailed interpretation of landslide mechanisms [Van Den 
Eeckhaut et al., 2007; van Westen et al., 2008]. Possibilities to using more automated 
techniques for the exploitation of high-resolution LiDAR-DEM have been demonstrated in 
various studies including the automated mapping of landforms [Anders et al., 2009] and of 
landslides in particular [Van Den Eeckhaut et al., 2011]. Such methods for DEM-based semi-
automated mapping of geomorphic features could well facilitate more detailed landslide 
studies in terrains that are difficult to access.   

For shallow landslide susceptibility assessment, involving process-based modeling of 
soil thickness and groundwater conditions, over wider areas high-resolution topographic data 
are needed according to Godt et al. [2008]. They recognize LiDAR-DEMs as promising in 
this respect, also because the underlying laser scanning technology allows constructing DEMs 
in vegetated landscapes. 

As such the use of high resolution DEMs is not intended to replace geomorphic 
fieldwork and geophysical site investigation. At the same time this type of DEM can be very 
useful in an early stage of detailed landslide investigation, when other relevant data are (still) 
lacking, as is illustrated by Derron et al. [2005] in the preliminary assessment of a large 
landslide are (300,000 m2) in Norway.  They acquired a DEM at 1 by 1 meter spatial 
resolution obtained from airborne LiDAR data. This LiDAR-DEM was used in a three 
subsequent activities. First, the DEM was used in a structural analysis of discontinuities and 
faults on the landslide that are relevant to slope stability. Next, kinematic tests of planar 
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sliding were carried out. Thirdly, the DEM was used for a first estimation of the potential 
landsliding volume.  

Since a DEM presents only surface data it is not an easy task to estimate a landslide 
volume form only a single DEM. However, if DEMs are available for different periods of the 
same landslide area they can be used to estimate and visualize displacement on slopes due to 
landslide activity. By subtracting multi-date elevation values from each other displacement 
and changes in volume can be computed. However, this is only feasible if the elevation data 
represents enough detail and precision for the targeted magnitudes of displacements and 
volumes [van Westen et al., 2008]. 
 

• DEM resolution and effect on landslide hazard assessments 
In theory many sources of DEM are available to date. However, which type of DEM provides 
adequate topographic parameters, in practice it depends on the type of landslide under study 
and the characteristics of the area. Still far too often the type of landslide assessment and 
DEM data are not properly matched. If for example coarse-resolution (90*90 m) SRTM-DEM 
are used for statistical landslide modeling it is mostly because finer resolution DEM maybe 
too costly or simply not available. In such cases, however, the method and scale of the hazard 
assessment must take into account the data availability restrictions. This may require that 
initial ambitious objectives are tempered given data availability. 

DEM resolution affects for example the distribution of slopes (Figure 14; Zhang et al., 
1999], catchment areas and relative shallow landslide hazard, as is found by Claessens et al. 
[2005]. They experimented with DEM pixel sizes of 10, 25, 50 and 100 meters. Accepting 
that probably no perfect DEM resolution exists, they conclude that “Ideally, a DEM should 
represent the topographical and hydrological properties derived from it in such a way that 
neglecting features which are possibly ‘filtered out’ does not harm the quality of the model 
outcome”. There is still relatively few studies, which evaluated the impact of the input data 
resolution on probabilistic models. Lee et al. [2004] conducted a case study in Korea by 
simply resampling the original input datasets. They concluded that resolution of 30m or less 
are appropriate for scales larger than 1:50.000. In another study comparing different DEM 
resolutions and their effect on landslide assessment Tian et al. [2008] found that the use of a 
finer resolution DEM does not necessarily increase the predictive accuracy in landslide 
susceptibility assessment. Coarser DEM resolutions tend to have a smoothing effect on 
elevation values and those of derived parameters, on the topographic representation of a 
landscape more in general. It is often suggested that a pixel resolution between 5 and 20 
meters is required for genuine analysis of landforms and of related surface processes. 
However, for hazard assessments over larger areas the use of coarser resolution (up to 
90*90 m) may be more appropriate[Tian et al., 2008]. 

A number general suggestions for the use of DEM derivatives in different types landslide 
modeling are given by van Westen et al. [2008]. Slope gradient, aspect, shape, length and 
other derivatives provide relevant input factors for medium scale heuristic and statistical 
landslide analysis. They advise not to use slope gradient in small scale studies. However, in 
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large scale and detailed deterministic modeling slope maps can be used to estimate slope 
hydrology and slope stability. Apart from restrictions of having DEM data of too coarse 
resolution according to van Westen et al. [2008] DEM data can also be of too fine resolution. 
This might be especially problematic when the maps of other environmental variables used in 
the hazard assessments are of much coarser resolution. It also must be stressed that for 
example slope values are generally increasing with higher sampling distances of the DEM 
[Zhang et al., 1999], whereas resulting high local gradients are not necessarily relevant for the 
scale on which slope failures occur.  
 

• Object-oriented delineation of mapping units for landslide susceptibility and 
hazard assessment 

A basic decision that has to be made for the creation of susceptibility and hazard maps is the 
choice of the mapping unit whereas a multitude of different approaches reaching from pixel-
based methods to the use of administrative boundaries has been proposed. Since rectangular 
pixel-units do not represent well natural spatial units that condition the probability of slope 
failures the use of slope or terrain units as mapping units is a common approach [Rossi et al., 
2010a; Tian et al., 2010 and references therein; Van Den Eeckhaut et al., 2009]. In this 
section we provide an overview of recent trends for the automated delineation of landforms 
and highlight their potential usefulness for the objective delineation of mapping units at 
various scales. 

Information about landforms provides an important input for heuristic and 
probabilistic approaches to landslide hazard assessments [van Westen et al., 2003]. More in 
general landform information is relevant in all those cases where topographic parameters are 
not only used as individual modeling input parameters, but where they are also considered in 
a landscape context. 

Several recent studies in the field of geomorphometry target the (semi-)automated 
delineation and classification of landforms. Conventional approaches to geomorphic mapping 
and landform delineation are time consuming and strongly depend on a surveyor's 
geomoprphic expertise. Approaches for (semi-)automated landform classification intend to be 
less time consuming and more 'objective'. At the same time it is recognized [Anders et al., 
2009] that, also because of the multi-scale nature of geomorphic processes, accurate 
delineation of landforms using these automated approaches still remains a challenge.  
DEMs and DEM-derived parameters, such as slope gradient, slope orientation, profile 
curvature and plan curvature, for a main input for automated landform delineation and 
classification. So far, the types of landforms that can be classified using automatic 
characterization based on topographic characteristics typically include peaks and ridges, 
slopes, shoulders and terraces, depressions and valley bottoms.  

In pixel-based approaches for automatic landform delineation and classification using 
expert knowledge relationships are pre-defined between selected DEM-derivatives. A thus 
resulting decision table is used to automatically delineate landforms in a study area by 
assigning landform classes to pixel values. As a simple example of such a decision rule using 
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input terrain parameter raster maps: “if slope gradient is low and plan curvature is high, then 
the assigned landform is a ridge”. The open-source software package LANDSERF (see at 
www.landserf.org) provides a nice example of implementation of this kind of automated 
landform classification.    

Also non-pixel based approaches for image segmentation using object-oriented 
techniques for automated landform classification are being used. In fact, they are increasingly 
advocated for providing better accuracy and also for being more intuitive in the generation of 
landform information in an (semi-)automated manner [Blaschke, 2010; Dragut and Blaschke, 
2006; Martha et al., 2010a].  In pixel-based approaches landform class labels are assigned to 
a map at pixel-by-pixel basis. On the other hand, object-oriented (non-pixel based) 
approaches these landform class labels are assigned to recognizable segments (objects) in the 
landscape that share the same attributes. 

An automated landform classification using fuzzy membership classes and object-
basis image analysis is introduced by Dragut and Blaschke [2006] and their approach realizes 
three steps. First, a number of DEM-derivatives are produced as data layers. Next, image 
segmentation is used to delineate homogeneous objects at different levels. Thirdly, landform 
elements are classified using these object primitives applying a classification model based on 
surface shape and topographic position of objects. By eliminating manual classification steps 
the authors claim to reduce human errors in landform analysis. Furthermore, their approach is 
less time consuming and applicable in different types of landscape using different dataset. A 
disadvantage of object-oriented approaches, however, is that so far the required software tools 
are expensive.  

What both pixel-based and non-pixel based approaches share according to Stepinski 
and Bagaria [2009] is that they produce maps that contain unmixed (simple) well-defined 
landform classes. To enhance the often very granular results from pixel-based methods 
Stepinski and Bagaria [2009] propose a method for automated landform classification from a 
DEM that is capable of defining and mapping generalized landform classes. Their method 
first pixels in a DEM are re-classified into one of a set of pre-defined simple landform classes. 
The outcome of this pixel-based landform classification is used to define new landform 
features that also contain contextual information round each pixel. Combined image 
segmentation and clustering (using the so called recursive hierarchical segmentation 
(RHSEG) algorithm is subsequently carried out on these new features. Resulting geomorphic 
maps constructed by this approach are more useful for further analysis where combinations 
with other information such as land cover information are important. The authors note that 
their technique is not entirely restricted to applications on DEMs, but can also be used on 
other data types. Wang and Niu [2010] recently adopted an image segmentation algorithm on 
multiple input layers to obtain spatially homogenous mapping units and demonstrated the 
effectiveness of such an approach in a comparative susceptibility mapping at the Three 
Gorges Reservoir. Though, the authors did only adopt one specific segmentation it appears 
worth noting that segmentation is scalable almost seamless and might provide an interesting 
way forward for research to bridge between susceptibility models over multiple scales. 

http://www.landserf.org/�
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B. Lithology, Structure, Faults 
[BRGM+ITC] 

• Lithology and extraction of geological units 
The geological formations in a particular area are often a keyfactor for the occurrence of 
landslides [Gerrard, 1994; Pachauri and Pant, 1992; Sarkar and Kanungo, 2004] and 
combined with other information layers (in particular, lineaments, faults, landuse, soil, ...) can 
be used to map the landslide hazard on a regional scale. The required scale for such usage is 
about 1:25000. We can assume that for a more local analysis (mapping monitoring an 
indiviual landslide), a more detailed map (1:5000) will be required. That has incidence on the 
needed data characteristics: typically the needed resolution of the remote-sensing data will be 
about 10m for 1:25000 regional scale hazard mapping and 2.5-5m for 1:5000. 
The spectral analysis of the solar radiation backscattered by the ground surface (reflectance 
spectrometry) could be an important source of remote-sensing information about the chemical 
and mineralogical characteristics of the materials of the ground surface. In fact, the 
reflectance spectra (visible and near infrared) of the rocks have specific absorption bands that 
allow the identification of the constituent minerals, by analyzing the position, the shape and 
intensity of this bands. 
The best results of lithological mapping were obtained on areas were surface materials are 
well exposed, little altered and with mineral in pure concentrations. However, recent 
techniques of extraction of spectral information and the improvement of the instrumental 
performances, we are now able to use multi-spectral and hyper-spectral images with more 
complex geological situations. The analysis of hyper-spectral and multi-spectral imagery is 
therefore a powerful tool for identifying mineralogy from space. It provides quantitative 
mineralogical abundancy of exposed surface materials.  
 
The perspective of applications that could be identified in the domain of lithology, includes: 

a) the mineralogical characterization of continental surface using hyper spectral 
observation. 

b)  pedology and soil study 
c) monitoring of dynamic geology using multi-temporal acquisitions 

 
The main constrains for the use of hyperspectral and multi-spectral data for lithological 
mapping are: 

· The need of images without cloud cover. 
· The vegetated cover: if we are able to map mineralogy with a partial vegetation 

contain in the pixel, it is impossible to extract information about the ground surface 
with a dense vegetation (forest) masking the surface. That could be a major issue for 
landslides in a European contexts such those addressed by the project. Best results 
were obtained in arid environments [Gomez et al., 2005; Gomez et al., 2007; Harris et 
al., 2010]. 
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· The complexity of the covered area in terms of rock, soil and mineral mix. In addition, 
reflectance spectroscopy gives typically information on the first 50 m. Any alteration 
of the surface (including presence of lichens) affects the analysis. 

· A last issue comes from the availability of the appropriate sensor. The lack of 
spaceborne hyperspectral instrument is a limitation as the justification of a costly 
airborne campaign to complement existing geological data (at least in Europe) is valid 
only on sites where the surface geology knowledge is insufficient. In certain cases, the 
multi-spectral information from the ASTER sensor allows to produce relevant 
geological map [Gomez et al., 2005]. However, the 30 m resolution only matches 
partially with the needed specifications in terms of scale. 

 
 Recently it has been demonstrated that a synergetic use of airborne hyperspectral 
images and high-resolution LiDAR topographic data yields the possibility to use remote-
sensing as a tool for geological mapping in vegetated terrains [Grebby et al., 2011]. Such 
applications may be regarded more frequently as the availability of advance datasets 
increases. 
 

 
Figure 15: Derivative of a DEM and extracted fault lines [Gloaguen et al., 2007] 

• Extraction of lineaments 
Extraction of linear features on Remote-sensing images (or RS Digital Elevation Models) has 
been widely used [O'Leary et al., 1976] as indicator of the presence of specific geological 
objects (in particular lithological discontinuities) associated to discontinuities in the image. 
Classically, such extractions were conducted manually, based on the interpretation of the 
image by an expert. The expert visually delimitates features on the image based on his a priori 
knowledge of the objects on ground and their expected signature on the analyzed data.  

On the one hand such approaches could be inefficient in processing time and in the 
other hand the interpretation is expert-dependent. To cope with these issues automatic or 
semi-automatic algorithms were developed for extracting of such elements [Fukue et al., 
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1981; Gloaguen et al., 2007; Koike et al., 1995; Mallast et al., 2011; Marghany and Hashim, 
2010; Raghavan et al., 1995] in order to obtain faster and more objective results (Figure 15). 
However, as only features representing structural elements are useful, interpretation is still 
required for excluding feature from other sources (anthopogenic, biological, etc.). Therefore 
manual component of the analyses cannot be generally fully rejected. Most commercial image 
processing softwares (such as PCITM ,ENVITM or ERDASTM) propose tools for helping 
lineament extraction (including filters to pre-process the images and algorithm to extract the 
features).  

For the landslide susceptibility mapping, lineaments associated with fractures, 
discontinuities and shear zones are useful information that could be combined to other data. In 
most cases such information will be used to refine the lithological information and fault 
positions. Sarkar and Kanungo [2004] for example propose a more direct use of this 
information by including the density of lineaments as indicator in the susceptibility 
computation. An extensive review of the use of lineament maps ins landslide susceptibility 
and hazard mapping was recently undertaken by Ramli et al. [2010]. They concluded that 
lineaments maps are a vital part of landslide hazard assessment but also demonstrated that 
none of the reviewed studies used automated mapping techniques. The authors pointed out 
that manual mapping yield generally high uncertainties and only few studies apply 
instruments to evaluate such discrepancies of different lineament maps.   

Similarly to the previous sub-section, considering the scales required for the study of the 
landslide phenomena (1:25000-1:5000), we recommend the use of data with resolutions better 
than 10 m. Spaceborne sensors such as SPOT 5, Quickbird, Geoeye, or equivalent in terms of 
resolution can provide valuable information.  
 

• Identification of faults using radar interferometry 
SAR interferometry is used on active faults deformation since the 90’s for co-seismic 
displacements [Massonnet et al., 1993]. However, on the one hand, deformation on faults 
affected by earthquakes with high magnitudes such as most of the earthquakes mapped by 
conventional differential InSAR is generally too high to allow mapping of the displacement 
on surface rupture due to loss of signal coherence [De Michele et al., 2010; Raucoules et al., 
2010]. Sometimes, the lack of signal coherence in the InSAR signal of the displacement field 
is an indirect evidence of the seismogenic fault and can be used to detect un-mapped active 
faults or blind seismogenic structures [Talebian et al., 2004]. On the other hand, slow (cm/yr) 
aseismic movements on faults are difficult to observe on single interferograms as the 
displacement values are lower than the displacement detection capabilities of the technique, 
taking into account the presence of different sources of noise in the interferometric phase.  

More recently, processing of multi-temporal SAR data series provides an alternative 
for measuring such fault displacements by considering large sets of interferograms [Usai, 
2003] or based on point wise persistent scatterers techniques [Burgmann et al., 2006; Ferretti 
et al., 2001]. Application of interferometric techniques to landslides generally targets more 
specifically the assessment of the location of potentially sliding areas and their activity 
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[Guzzetti et al., 2009] than the identification of faults on the sliding area. However 
discontinuities in the interferogram could be in some cases identified as limits of the slide 
[Delacourt et al., 2007]. 

The limitations of the technique for landslide applications are those generally admitted 
for SAR interferometric techniques [Raucoules et al., 2007]. The quality of the InSAR 
information is generally poor on vegetated areas. Nevertheless, if short time span (such as 
obtained by the ERS tandem configuration in 95-98 or with Cosmo-skymed constellation) are 
possible, we could overcome this shortcoming. In addition L-band data (ALOS/PALSAR) 
less sensitive to vegetation than C-band data (EnviSAT/ASR, …) when used for 
interferometric purposes. 

In terms of resolution, the available sensors (resolution ranging from less than 1 m to 
about 20 m) are compatible with such deformation mapping on landslide. Higher resolution 
data sets can provide of course more detailed information.  
Finally, we will notice that fault location would be more reliable by integrating this 
information with the previously described elements (i.e lithology and lineaments) that provide 
complementary information on the surface signature of the fault.  
 

C. Soils  
[ITC] 

Spatial information about geotechnical and hydrological soil properties and about soil depth 
provides essential input data layers for large scale and detailed landslide studies, especially 
when using deterministic hazard modeling approaches. Modeling at small scale with 
insufficient soil input data will either lead to large simplifications in the resulting hazard and 
risk maps; or it will require long data collection campaigns [van Westen et al., 2008].  

Soil grain size distribution, soil cohesion, friction angle, and bulk density are examples 
of geotechnical properties that are crucial parameters in stability analysis. Dynamic modeling 
of spatial and temporal changes in hydrological conditions on slopes requires reliable data 
about soil depth (thickness) and about soil hydrological parameters such as pore volume, 
saturated conductivity and soil moisture. Van Westen et al. [2008] identify soil moisture as a 
main parameter in slope stability modeling, since it plays a critical role in triggering slope 
failure. 

As the result from local differences in soil forming processes soil properties can vary 
considerably at local scale. This makes that they are often difficult to map at medium scale 
and over larger areas. Therefore, environmental correlation using topographic factors and 
other proxies is often applied in the medium scale mapping of soil parameters. At local scale 
and in detailed studies spatial interpolation using geo-statistical methods is often applied.  
In fact, the variation in soil properties does not only occur in 2-dimensional space (soil depth 
that changes from location to location'), but also in 3-dimensional space (soil moisture 
changes with depth in a vertical soil profile) and even in time (soil moisture conditions show 
seasonal differences). 



D4.3 Final version 
Creation and updating of landslide inventory maps, landslide deformation maps                      Date:    2011-09-05 
and hazard maps as input for QRA using remote-sensing technology 
 

 
 
Grant Agreement No.: 226479 Page 244 of 302 
SafeLand - FP7 

This complexity of soil and soil properties makes the use of remote-sensing for soil and 
soil property estimation not an easy task. Furthermore, with most of the currently available 
sensor systems only characteristics of the soil surface can be characterized. Subsurface soil 
properties, however, cannot be 'seen' with remote-sensing techniques alone. A great asset of 
remote-sensing, on the other hand,  is provided by the possibility to obtain different images of 
the same part of the earth surface. This allows monitoring differences in dynamic soil 
properties such as soil moisture content. Furthermore, remote-sensing can be used to observe 
land qualities that are known 'proxies' (environmental co-variables like slope gradient, 
topographic position) for soil properties that cannot be directly observed themselves. Authors 
like McBratney et al. [2003] even claim that these proxies together with field observations are 
the basis for deriving relevant soil information from remote-sensing images.   
 

• Remote-sensing in the visible and infrared domain  
The use of aerial photographs and medium resolution multi-spectral satellite images (from 
Landsat, Spot) has a long tradition in conventional general purpose soil mapping (soil 
survey). Stereoscopic visual image interpretation and automated image classification 
algorithms are used for extraction of information about landform, land cover, drainage pattern 
and other environmental co-variables. Together with soil surveyor's knowledge about soil 
forming factors and corresponding spatial variation of soils, this information is used to 
identify boundaries between soil classes. This type of soil estimation using remote-sensing 
requires a soil expert who can use what can be 'seen' on the remote-sensing image – i.e. 
aspects of the soil surface – to also understand the distribution of subsurface elements of the 
soil profile [Campbell, 2009]. For the National Resources Inventory (NRI) program of the 
United States Department of Agricultural now also IKONOS high-resolution satellite image 
data are applied for soil resource mapping.   

Under certain circumstances, for example when vegetation cover is lacking, direct 
observation of surface soil properties from image data in the optical domain is possible. Some 
examples are: surface texture, soil moisture and organic matter [Campbell, 2009]. Micro-
topographic differences on bare fields can show as darker image tones (lower parts, restricted 
drainage) that possibly correspond to higher moisture content, finer soil texture and higher 
organic matter content in the top soil; or as lighter image tones (higher parts, improved 
drainage) that can correspond to less organic matter content, somewhat coarser texture and 
lower soil moisture content in the top soil. 

Examples of satellite sensor systems with image bands in the near infrared and the 
shortwave infrared image domains are Landsat, ASTER, AVIRIS. Differences in reflection 
and absorption features between soil materials of different mineral composition provides soil 
spectral reflectance curves that can be used to differentiate between mineral composition of 
soils. To date so called spectral libraries do exist that provide spectral reflectance curves for a 
large number of soil materials and minerals. See for example the USGS spectral library 
(http://speclab.cr.usgs.gov/) and the ASTER spectral library at NASA 
(http://speclib.jpl.nasa.gov/). In soil context the image bands in the shortwave infrared 

http://speclab.cr.usgs.gov/�
http://speclib.jpl.nasa.gov/�
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(SWIR) are in particular significant for the detection of clay minerals in surface materials (as 
indicator for soil texture) and because of their sensitivity to surface soil moisture.  
 

• Remote-sensing in thermal-infrared domain (TIR) 
Emission by the earth surface of long-wave infrared (thermal) radiation provides information 
about differences in properties of both surface materials and subsurface geology. Absorption 
of this thermal energy and its re-radiation later on is controlled by the thermal properties of 
many factors including characteristics and depth of surface materials, differences in soil 
moisture condition and parent material. This makes remote-sensing in the thermal infrared 
domain relevant for studying soils and soil parameters.  

Differences in heat capacity can be exploited in the characterization of soil texture and 
soil moisture conditions. The heat capacity of dry material is one fifth of that of water 
[Campbell, 2009]. Consequently, moist and water saturated soils have higher heat capacity as 
compared to dryer, often also coarser textured, soils. Also the thermal conductivity of soils 
increases with finer soil textures and higher soil moisture content.  

Daily and seasonal variation in both air and soil temperature, including their 
interaction, tend to complicate the use of thermal remote-sensing for soil estimation. Soil 
surface temperatures vary daily with solar illumination variation between day and night; they 
vary seasonally with differences in solar angle and corresponding day length. On the other 
hand, by considering seasonal thermal image pairs the contrasting seasonal soil temperatures 
can be used for the observation of soil properties like soil moisture content and soil texture. 
However, so far this is not applied often for soil determination [Campbell, 2009]. Another 
example is provided by Verstraeten et al. [2006] who have used thermal information from 
METEOSAT at 10-daily intervals to estimate soil moisture conditions for European forests. 

Above mentioned METEOSAT is an example of a meteorological satellite based system 
with thermal imaging capability. MODIS is another example of a high temporal resolution, 
coarse spatial resolution system. Landsat7 and ASTER are medium-resolution, operational 
sensor systems with image bands in in the thermal infrared domain. At NASA's Jet Propulsion 
Laboratory the development of HyspIRI is under study, a new spaceborne system that will 
also carry a thermal infrared imager of 60*60 meter spatial resolution (see at 
http://hyspiri.jpl.nasa.gov/). 
 

• Remote-sensing in the active microwave domain (RADAR) 
Backscatter characteristics of returned microwave signals that were purposely broadcasted by 
spaceborne or airborne remote-sensing systems are mainly used to determine soil moisture 
conditions and surface roughness. 

The ability of a soil material to retain electrical charge (represented as its dielectric 
constant) is influenced by soil moisture [Campbell, 2009]. Overall higher soil moisture 
content corresponds to a higher dielectric constant, which in turn contributes to a higher radar 
backscatter of that soil. Depending on the RADAR system and under favorable conditions 
radar signals have a ground penetrating capability, enabling the estimation of soil moisture in 
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up to the first centimeters of the topsoil. However, interference by vegetation cover and relief 
can be complication factors here. Ground penetration is highest for dry soils. In a recent study 
Lasne et al. [2004] were able to detect subsurface structures up to a depth of about 5 meters 
below a sand dune landscape, using airborne RADAR technology and advanced data 
processing capability.  

In the United States, RADAR systems mounted on aircraft are used in farm 
management to monitor soil moisture conditions of agricultural fields. So called Ground 
Penetrating Radar (GPR) is increasingly applied to observe and monitor soil moisture 
conditions in field surveys. 

Passive microwave sensing presents a new development for soil determination using the 
microwave domain. It is described later in this chapter.  
 

• Hyperspectral remote-sensing 
Imaging spectroscopy is a technology that for long already is used for the identification of 
materials and material composition. As hyperspectral remote-sensing this technology is also 
widely used by geologists for the detection and mapping of minerals. In fact, it has developed 
as a new branch of remote-sensing, also because of the special sensor systems, image data 
processing methods and software tools that it involves. Based on many field and laboratory 
measurements on known minerals and other identified earth materials so called spectral 
libraries (see also above) are available. The known spectral characteristics of these materials 
are used in the identification of unknown materials on hyperspectral image data. An example 
of an operational hyperspectral imaging system is HYPERION (30*30 meter spatial 
resolution). AVIRIS, DAIS and HYMAP are examples of airborne systems.  

To date also spectral libraries for soil materials are developed. An example is the 
Globally Distributed Soil Spectral Library (see at: http://africasoils.net/data/ICRAF-
ISRICspectra). This initiative of the World Agroforestry Centre (ICRAF) and the 
International Soil Refererence Information Centre (ISRIC) intends to present a spectral library 
of global soils for the sensing of soil quality. 

According to Campbell [2009], the value of hyperspectral remote-sensing for soil studies 
is restricted to what he calls “rather specific situations” where a soil surface is exposed to the 
remote sensor. These are for example situations where there is no vegetation cover, such as in 
a soil salinity study in an arid region.  
 

• New developments in remote-sensing-based soil moisture estimation 
As has been mentioned already, the possbility of considerable variation in soil mositure 
content over short distance in space and also over short periods of time can make soil 
moisture estimation a real challenge [Campbell, 2009]. This may be a reason why according 
to Ray et al. [2010] soil moisture data obtained by remote-sensing so far have not been used 
in landslide studies.  

Several satellite sensor systems measure soil moisture at a routine basis already. For 
example the known correlation between radar backscatter and soil moisture content is 
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exploited by active and passive microwave sensor systems at different spatial and temporal 
resolutions. Examples of sensors systems in the active microwave domain are RADARSAT 1 
and ENVISAT’s advanced synthetic aperture radar (ASAR). Examples of satellite-based 
passive microwave sensor systems are the Advanced Microwave Scanner (AMSR-E) on 
board of NASA's Aqua satellite, the Tropical Rainfall Measuring Mission's Microwave 
imager (TRIMM-TMI). Note, that many of these satellite systems play a role in global 
weather and climate modeling as well.  

Special attention these days is paid to passive microwave sensors, since they provide 
higher accuracy in soil moisture measurements. The AMSR-E instrument, for example is 
potentially useful in the characterization of soil moisture in areas prone to landslides [Ray et 
al., 2010]. 

A new development is the merging of passive and active shortwave satellite image data 
for soil moisture estimation. At this moment a new instrument that integrates active and 
passive microwave sensing is being developed by NASA. This Soil Moisture Active and 
Passive (SMAP) will measure both surface emission (radiometer, passive component) and 
backsactter (radar, active component). Its launch is scheduled for November 2014 (for sensor 
and mission information, see website: http://smap.jpl.nasa.gov).  
 

• RS-based soil depth estimation 
In soil-geomorphic context soil depth can be defined as the distance between the surface and 
the parent material of the soil. This same depth is identified by geologists and engineers as 
regolith depth. Depending on local conditions soil depth can vary from a few centimeters to 
tens of meters. Apart from characteristics of the parent material itself (lithology, weathering 
rate), factors such as slope gradient, slope shape, vegetation cover and land use activities 
result in a spatial variation in soil depth. Since the parent material underneath the regolith 
layer cannot be seen it is not possible to directly observe soil depth.  

These are among the reasons that so far remote-sensing has not proven all that useful 
in obtaining relevant soil depth data for landslides studies. Furthermore, remote-sensing in the 
optical and microwave domain are limited to observing features at the earth surface or in a 
shallow subsurface layer. Field estimation and field mapping remain important for soil depth 
estimation. 

For relatively small areas spatial estimation of soil depth from observation data from 
boreholes and pits can be an alternative. Kuriakose et al. [2009], for example, applied spatial 
interpolation by regression kriging on blocks of 20 by 20 meters to estimate soil depth in a 
catchment area of 9.5 km2. As input they used 259 soil depth measurements, together with 
terrain parameters and land use data as environmental co-variables.  

However, if larger study areas have to be covered this kind of spatial estimation is 
often too time-consuming and expensive. This is mainly because of the large number of soil 
depth observations required as input for spatial interpolation.  
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Geophysical survey techniques provide an alternative option for soil depth mapping. 
Wong et al. [2009], for example, have used airborne gamma-radiometry to estimate soil depth 
until 45 centimeters in overall sandy soils in a lateritic landscape. 
 

D. Land cover information 
[ITC] 

Land cover is generally recognized as important environmental factor in hazard and risk 
assessment. In many cases differences in space and time in land cover conditions and land use 
practices play a determining role in the occurrence of landslides. Data about land cover types 
and about temporal changes in land cover are identified by van Westen et al. [2008] as highly 
important, from small scale to detailed landslide hazard assessments. Land cover data are 
even considered as critical for probabilistic approaches to landslide hazard modelling. 
Vegetation related characteristics such as aerial (canopy) cover and rooting depth, but also the 
presence of different vertical layers (of trees, shrubs, herbs) influence slope stability. 

However, different land cover types and changes in land cover do not only play a role 
as landslide causing factors. They can as well be the effect of landslide activity. Then they 
should also be considered as potential elements at risk, being affected by occurring landslides. 
The ecological value of a forest area, for example, may be seriously affected by landslide 
activity. Or the harvest of agricultural fields may be lost after being covered by soil, rock and 
debris transported by a landslide. 

The relationship between landslide occurrence, land use activities and land cover is not 
necessarily that simple and straightforward. For a study area in Cambodia Lee and Sambath 
[2006] found lower landslide occurrence in urban, agricultural and grassland areas, and higher 
occurrence of landslides under forest and shrub land. Here landslides simply correlated to the 
slopes occurring in mountainous terrain. With changes in land use this situation can of course 
change with time; urban expansion and an increase of land use activities on sloping land may 
well establish a strong and direct relationship between landslide occurrence and (changed) 
land cover. New Zealand provides a good example in this respect [Glade, 2003]. With the 
arrival of European settlers in a relatively short period of time the native forest and bush 
vegetation was cleared from extensive hill areas and converted into farm land and pasture for 
sheep herding. This has resulted in a permanent new situation of landscapes that are much 
more sensitive to disturbance and with hill slopes much more susceptible to landslide 
occurrence.  

Land cover has to be handled with care as a predictive variable for landslide 
susceptibility assessment using bivariate approaches such as weight of evidence modeling. 
These approaches assume the use of a priori independent variables, whereas the above 
mentioned example from Cambodia shows that such is not necessarily the case for land cover. 
Thiery et al. [2007] present a statistical bivariate approach for large scale (1:10,000) landslide 
susceptibility assessment that includes a procedure to identify which are the best predictive 
variables in a given area. As an advantageous additional effect application of this procedure 
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also allows to limit the number of landslide and thematic data to be collected. The proposed 
procedure consist of four successive steps: (1) definition of the best landslide inventory 
('response variable') to be introduced in the statistical model; (2) identification of the best 
predictive variables (the class of predictive variables that are influencing the location of 
landlsides) to be used, by minimizing conditional dependence via statistical tests; (3) using a 
combination of statistical tests and expert knowledge to test the model performance in a 
'sampling area'; (4) application of identified neo-predictive variables and weights to the total 
study area. According to this procedure expert knowledge is needed in statistical models in 
order to produce reliable landslide susceptibility maps [Thiery et al., 2007]. 

Remote-sensing technology has been used for decades already for the generation of 
information about land cover, especially vegetation cover types, and changes in land cover. 
Especially for remote-sensing sensor systems in the optical and near infrared domain a wealth 
of well documented approaches and techniques exist that can be applied for image 
manipulation and feature extraction. The re-visiting capability of well-known medium-
resolution satellite-based sensors such as Landsat-TM, SPOT, and ASTER has also resulted in 
an array of techniques for remote-sensing-based land cover change analysis. Where above 
mentioned remote-sensing systems re-visit an area every 2-3 (SPOT5) to 16 (Landsat7) days 
other sensor systems such as the NOAA-AVHRR, MODIS, and SPOT-vegetation systems 
provide global daily revisiting capability. This has led to the development of hyper-temporal 
image analysis. By applying images of many different time periods of the same area the 
seasonal behavior of vegetation can be monitored, see for example the application for crop 
mapping by de Bie et al. [2008].  

Despite the availability of relevant remote-sensing technology (see above), in landslide 
studies land cover data are far too often considered as a static factor only [van Westen et al., 
2008]. But activities and events such as tree logging, wildfires, deforestation for road 
construction and crop cultivation clearly influence landslide activity. Quite a number 
approaches for remote-sensing-based detection of changes in land cover are applied on a 
routine basis. Examples are post-classification comparison, the use of multi-temporal colour 
composites, temporal image ratioing. However, the resulting land cover change information is 
barely considered in landslide hazard studies. Even more so, sometimes even outdated land 
cover information is used in landslide hazard studies. An example in this context is the 
CORINE 2000 land cover map of Europe. Land cover information of this map produced in 
2000 is still sometimes used, without being updated, as input variable in national scale 
landslide susceptibility assessments.   

Since “landlside hazard and risk maps are generated for the future”, as van Westen et 
al. [2008] put it, not only detected changes in land cover are important. Also expected land 
cover changes in the future should play a relevant role in landslide hazard and risk studies, for 
example in the form of the modeling of change scenarios.  
Land cover also plays a role in landslide hazard assessment at global level. Hong and Adler 
[2008] have developed a preliminary satellite-based global landslide hazard algorithm for 
near real-time prediction of areas with increased potential for the occurrence of rainfall 
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triggered landslides. This algorithm uses rainfall data obtained using the Tropical Rainfall 
Measuring Mission (TRMM) satellite to compute a rainfall duration-intensity threshold that is 
combined with 6 surface parameters, including land cover. 

In their evaluation study of above mentioned algorithm Kirschbaum et al. [2009] use 
the Moderate Resolution Imaging Spectroradiometer (MODIS) to identify general land cover 
classes as input to this algorithm. Although MODIS offers land cover information with near 
to global coverage, they find that classification of land cover pixels into distinct land cover 
categories can be subjective. MODIS pixel resolution restricts accurate characterization of 
landslide susceptibility. According to this study for effective operational global level landslide 
forecasting remote-sensing products at higher resolution would be required to represent 
variation in land cover and other surface characteristics. 

Deforestation is generally recognized as a main factor contributing to the development 
of landslides. Rapid deforestation of hillslope areas often causes a sudden increase in hill 
slope instability. The removal of the forest vegetation results in changes in soil hydrology. 
And even more important, the decreased root cohesion reduces soil strength and consequently 
increases the probability of landslide occurrence in response of rainfall or other triggers.   
Especially the deforestation of extensive areas in mountainous terrain over relatively short 
periods of time and the substitution by crop land and managed grasslands often results in 
development of a chain in time of erosion, landslides, and debris flows. This not only has a 
permanent destabilizing effect on the hill slope landscape but also will result in the 
development of new environmental problems for communities living in downstream areas. 
Examples for such issues can be found worldwide from the Spanish Pyrenees [Garcia-Ruiz et 
al., 2010] to New Zealand [Glade, 2003]. In both areas rapid deforestation over larger areas 
and subsequent conversion into grassland for sheep herding has resulted in a clear increase in 
slope instability and corresponding increase in landslide susceptibility.  

Wildfires form another factor contributing to the development of landslides. Wildfire 
is in many regions a recurrent process. Depending on its intensity the effect of a wildfire 
ranges from a reduction in vegetation cover to a complete removal of the vegetation cover. A 
hillslope burnt by a wildfire will suffer strong erosion, with its impact onsite but also 
downslope. Since the wildfire results in (partial) removal of vegetation cover the soil 
hydrological conditions will change, up to a number of years afterwards. As a result the 
hazard that rainfall triggered landslides occur will considerably increase. If an area is only 
affected once by a wildfire the vegetation cover will re-establish with time and conditions 
may return 'back to normal'. However, in case of recurring wild fires in the same area they can 
result in a significant long-term destabilization of a landscape. The increase in dry periods and 
resulting wildfires coupled with an increase in the occurrence of high intensity rainfall in 
different Mediterranean and semi-arid regions in the world increase the risk for landslides. 
Bisson et al. [2005] have developed an approach for rapid appraisal of landslide hazard in 
wildfire affected areas. This approach consists of the following steps: (1) identification of 
burned areas using multi-temporal multi-spectral satellite image data; (2) evaluation of the 
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potential for landslide development in identified burnt areas using morphometric parameters; 
(3) evaluation of elements at risk (buildings, roads, a.o.) exposed to landslide hazard; Thus 
this method seeks to identify those wild fire affected (burnt) areas that are most prone to 
landslide development. 

 

4.2.4. Remote-sensing derived elements at risk maps as inputs to risk models 

[ITC] 

A. Elements at risk in the landslide hazard context 
 
Landslide risk can only be meaningfully assessed and modeled if suitable information on all 
aspects central to the risk concept is available. Specifically, this means that current, accurate 
and comprehensive information on the actual hazard, all relevant elements at risk (EaR) and 
their value and vulnerability is required (Risk = hazard * vulnerability * amount). This then 
allows an estimation of the expected losses for a given time unit [van Westen et al., 2008; 
Zezere et al., 2008]. Several SafeLand deliverables review how landslide hazard can be 
assessed (D2.1 and D2.2), focusing on landslide inventorization and characterization (D4.1, 
D4.3), slope susceptibility assessment (D2.4), landslide triggers (D1.1) and frequency 
calculations (D3.7), and on landslide runout modeling (D1.9). Once the actual hazard of mass 
movements is understood, including what types of movements can occur, and what the 
magnitude and spatial extent of such events is going to be, it needs to be analyzed what 
damage they can cause. EaR are defined as “population, properties, economic activities, 
including public services, or any other defined values exposed to hazards in a given area” 
[Varnes, 1984], frequently also referred to as “assets”. The amount of elements at risk can be 
quantified either in numbers (of buildings or people), in monetary value (replacement costs, 
market costs etc.), affected area or importance or the EaR. 

Landslides are only of consequence and interest when damage can be caused, i.e. 
where elements that can suffer damage are present. This implies that we require information 
on the presence of EaR, but also whether they are truly at risk given the present landslide 
hazard. For example, a bridge and an adjacent building may both be destroyed in a debris 
avalanche, while in a less energetic debris flow only the weaker building might be damaged 
or destroyed. Those differences in performance are evaluated via their vulnerability to present 
mass movement types and their magnitude [Papathoma-Kohle et al., 2007]. It is, therefore, 
meaningful to begin with a complete inventory of all EaR of importance in a landslide hazard 
zone, even if some of them turn out to be unaffected by certain events (vulnerability, V, = 0). 

Landslide-prone areas that are inhabited tend to be characterized by different EaR 
types, not all of which are physical and can be quantified in monetary terms. The typical 
physical elements include buildings, roads, railways, bridges, land used for production 
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(agriculture or forestry), and industrial facilities [see for example Abella and van Westen, 
2008]. Also people are in principle physical EaR, although a loss quantification similar to the 
other classes, i.e. in financial terms, is less meaningful. They also differ fundamentally in 
terms of physical presence, showing a dynamic that is comparable to vehicles, another 
important physical EaR. Even cattle led on landslide-affected roads in some countries are 
dynamic EaR of economic value. Current landslide risk assessment work tends to focus on the 
permanent physical infrastructure categories, in particular buildings and roads. In addition to 
direct physical damage, however, infrastructure also serves an important economic function 
that may suffer due to a hazardous event. It is possible to calculate the economic effect of a 
temporary or permanent disruption of a transport corridor due to landsliding, considering 
actual amounts and values of transported goods or services, alternative routes, etc. However, 
this type of economic study is rare and rather local [Guzzetti et al., 2004; Jaiswal et al., 2010; 
Zezere et al., 2008]. Similarly, it is very difficult to model or calculate the potential or actual 
losses to protected areas (national parks), wildlife, biodiversity, or other such EaR, not least 
because of potential secondary effects, such as on tourism [Delmonaco et al., 2009]. These 
different aspects can be investigated in terms of the specific physical, social, environmental, 
economic or political vulnerability of the present EaR (see Safeland deliverable D2.5.). In 
case of excessive complexity due to the number of diverse EaR, it is also possible to focus on 
their functional linkages within a system instead [Pascale et al., 2010]. 
 

B. Inventorization of EaR 
 
A number of ways exists to map and characterize the different EaR, with methods and data 
sources depending on their type. Existing cadastral data provide information on buildings, 
while transport authority records contribute infrastructure information, and census data add 
information on people living in a hazardous area. Other government records may reveal 
additional information, also on the non-physical EaR mentioned above. Where those records 
are missing or incomplete, thematic maps may be able to fill or reduce the gap. For example, 
information on buildings or settlements, bridges, railways, roads, or agricultural lands can be 
extracted from topographic maps. However, to be of use, the above data sources need to be 
current and complete, and of sufficient detail, all of which is frequently not the case. While it 
is possible to create such EaR inventories or update existing ones through field-based 
mapping [with GPS; Montoya, 2003], the most efficient way is via remote-sensing (RS) 
methods. This is easiest for stationary, physical EaR, and many RS datasets and processing 
methods can be used to map them. 
 

• Suitable data 
Appropriate data types and methods need to be identified in the context of the EaR of interest, 
in particular their size and spectral properties. Relatively easy to detect are buildings and 
industrial facilities, roads, railways and bridges, and fields and forest stands. It has to be noted 
that the vulnerability of different building types can vary dramatically, with the building type 
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also being a proxy for the type of persons present in the building (i.e. not directly visible 
EaR), and their respective social vulnerability [a school, hospital or factory; Ebert et al., 
2009]. However, distinguishing the type of building based only on RS data may not be 
possible; hence the EaR database may only include information on a building of a given size 
being present, without including more detailed information on type and occupants, i.e. little to 
work with for a vulnerability assessment. 

The principal RS data types to be used for EaR inventorisation are aerial photographs, 
satellite images, and airborne laser scanning. Satellite data useful in this context can be further 
broadly separated into optical and radar images. For all data types the spatial resolution 
largely determines the minimum size of an EaR to be detectable, while the spectral 
characteristics (number and wavelength of spectral bands) inform which types of EaR can be 
mapped, which is further a function of the local spectral contrast. In principle three different 
image interpretation levels are distinguished: (i) EaR detection, which only discerns separate 
objects, (ii) recognition of what those EaR are (distinguishing a building from a parking lot, 
or a field from a forest stand), and (iii) identification, whether a building is residential or 
industrial. For risk assessment this gradation is clearly of critical importance as it determines 
the amount of information on value and vulnerability available. 

Aerial photographs (AP), in addition to having the highest spatial resolution, have the 
longest record of any RS data type. Consequently, they have been used in numerous projects 
to map physical EaR. In fact, given that any landcover element that is detectable remotely 
may also be an EaR in some hazard context, any RS methodology explored or developed in 
the past to map or characterize landcover features can also be used to map EaR in landslide 
areas. For AP this has been done visually or (semi-)automatically, and using monoscopic and 
stereo imagery. For current landslide EaR inventory work traditional analogue aerial photos 
have been losing importance, though modern digital aerial images remain a viable data 
source. The latter allow more rapid data processing, real-time georeferencing and 
photogrammetric processing, direct integration of raw data and derivatives in a GIS 
environment, and better spectral performance. For example, Microsofts UltraCam camera 
captures 4 spectral bands, including near infrared (NIR) at resolutions of up to a few cm. Both 
the high amount of detail and the availability of a NIR band allow not only traditional 
physical EaR to be mapped, but also accurate distinction or different vegetation types 
(different forest or crop types). Given the relatively low flying height, AP often have 
problems with occlusion, which can pose problems in densely build up areas or steep terrain, 
where EaR (roads along cut slopes) may be obscured. In wooded areas, AP, like all optical 
image data types, also suffer from lacking penetration, which readily obscures roads and other 
important features. The increasing amount of detail of AP, and the increasing availability of 
digital data, have also caused changes in processing. Historically, AP analysis was focused on 
visual analysis and photogrammetry, while subsequent digital processing (at first of scanned 
images) was limited to pixel-based processing, i.e. using per-pixel spectral information only. 
More recently this has been replaced by more advanced methods, including neural networks, 
texture-based pattern recognition, change detection [Chang et al., 2010] or object-based 
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analysis [Perea et al., 2009; Tuominen and Pekkarinen, 2005]. The principal disadvantages of 
aerial photography are their relatively high cost per area unit and lack of regular repeat 
observations. Most parts of the world’s land areas have not been imaged by AP in recent 
decades, hence for updating EaR databases AP are of limited use. 

Optical satellite images provide information similar to AP, but also offer many critical 
advantages. In the past decade spatial image resolution has been increasingly approaching 
those of AP. Moving to meter- and submeter resolutions, i.e. to Ikonos, Quickbird, 
Worldview-2 and Geoeye-1 with pan-chromatic resolutions of 1m, 0.61m, 0.5m and 0.41 m, 
respectively, identification of small EaR, such as individual buildings or bridges, has become 
possible. The principal advantages of satellite data over airborne imagery are (i) access also to 
remote areas, (ii) lower cost per area unit, (iii) regular repeat coverage of the same scene with 
identical viewing geometry, and (iv) completely digital acquisition and sophisticated data 
calibration. Modern satellite sensors, such as Quickbird and Ikonos, and more recently 
Worldview-1 and Geoeye-1, have also been offering stereo coverage, as well as pointable 
sensors that allow more flexible coverage away from nadir. In principle the same processing 
methods explained for AP are applicable to optical satellite images. One important difference, 
however, is that satellite sensors frequently have more spectral bands (for example, 
Worldview-2 has 8 bands), providing more spectral discrimination, and information from 
spectral ranges not covered by AP. 

Radar satellite images provide information that differs fundamentally from the optical 
domain. Radar data primarily reflect the surface physics (structure/roughness, moisture, 
topography), compared to the surface chemistry that optical data correspond to (mineral type, 
chlorophyll content in leaves, etc.). The data are therefore well suited to identify landcover 
objects/EaR that differ physically from their surroundings [identification of individual forest 
stands; Grover et al., 1999], or have sharp geometric contrast. In particular buildings and 
bridges are straightforwardly mapped with radar [Ferraioli, 2010; Gamba et al., 2000; Wang 
and Zheng, 1998]. The typically smooth surface of roads also aids their detection with radar 
[Dell'Acqua and Gamba, 2001; Tupin et al., 1998]. Like all image types, radar data have 
disadvantages. The oblique viewing angle leads to severe geometric distortion, especially in 
mountainous areas: foreshortening, layover, and radar shadow. This means that features that 
are visible from a vertical perspective, such as narrow roads in forests or roads cuts along 
steeper slopes, may not be visible. Also features that are chemically (and thus visually) 
distinct but similar in terms of roughness (unsurfaced roads surrounded by rough, unvegetated 
terrain) may not be visible in radar imagery. Recent generations of spaceborne radar sensors, 
such as TerraSar-x and Tandem-X, reach spatial resolutions on 1 m (in small-coverage 
spotlight mode), allowing also small features to be resolved. 

Airborne laser scanning, or LiDAR, constitutes a distinctly different RS type from the 
above. Like radar, it is an active sensing methodology, where the instrument emits a laser 
signal and measures the return information. Due to signal attenuation and laser beam 
divergence, it is currently only practically used in ground-based instruments and mounted on 
aircraft operating at altitudes of up to approximately 8000 m. LiDAR measures directly and 
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efficiently 3D coordinates (x, y, z) of points on surfaces, including the terrain but also 
buildings, vegetation (leaves) and above-ground utility lines, with data being referenced to a 
global coordinate system. Other information, such as object reflectivity, can also be recorded 
for each point. LiDAR directly delivers so-called point-clouds, i.e. directly without laborious 
manual processing steps. While LiDAR does not produce photographic images, it has other 
advantages, such as (i) penetration of vegetation and thus recording of the ground surface also 
in wooded areas, (ii) the high degree of automation, ranging from data acquisition to digital 
terrain model (DTM) generation, (iii) a high point density of up to several tens of points per 
m2 that allows a very detailed terrain description, (iv) a vertical accuracy of up to 
approximately ±5 cm, and (v) as an active system allowing measurements at night or over 
areas without texture (snow). Penetration of haze, smoke, water vapour clouds, rain, and 
snow-fall is only possible for short ranges or limited atmospheric disturbance by these effects 
[Jelalian, 1992]. Thus data acquisition during rain or fog or through clouds is not possible. 

In the landslide context LiDAR has shown great promise. This is because (i) the 
typically local scale of (especially active) landslides matches well the local, but high 
resolution coverage of LiDAR, (ii) LiDAR data can provide information on minute 
morphological changes (though only with multi-temporal data), (iii) LiDAR data do not suffer 
from the occlusion that poses problems in radar and low-altitude aerial imagery, and (iv) 
multiple signals returns can be recorded [for more background information on lidar see also 
Kerle et al., 2008]. Point (iv) is of particular interest. It means that a single LiDAR signal 
emitted from the sensor leads to height information from different levels, i.e. the ground, 
major tree branches, and tree tops. This allows vegetation to be identified and characterised 
[tree vegetation type, height and density; Blair et al., 1999; Harding et al., 2001; Reutebuch et 
al., 2005], or digital terrain models (without above-ground features such as vegetation) to be 
calculated [Kobler et al., 2007]. It also allows landslides underneath vegetation to be 
identified [Van Den Eeckhaut et al., 2011; Van Den Eeckhaut et al., 2007]. Similarly, also 
buildings (Figure 16) and roads (Figure 17) can be readily identified in LiDAR data using 
such filtering [Forlani et al., 2006; Razak et al., 2011a]. Depending on the detail of the 
LiDAR survey, a comprehensive description of buildings is possible, including height, size, 
shape, type (based on building footprint and roof structure). Compared with airborne and 
satellite images discussed above, LiDAR provides a useful combination of many of their 
advantages, and is thus able to provide very elaborate data on a number of landslide risk 
related parameters. Current disadvantages are the relatively high cost of LiDAR instruments 
and LiDAR-ready aircraft, resulting in high survey cost and typically relatively small survey 
areas. Like with aerial photographs, most of the world’s terrestrial areas have not been 
mapped with LiDAR. However, LiDAR no longer remains a niche, and the amount of 
systems in use is rising rapidly. 
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Figure 16: Locations and heights of buildings in landslide prone areas as extracted from a high-resolution ALS 
dataset. 88.6% of the buildings were correctly detected and the map includes only 10% false positives [Razak et 
al., 2011a]. 

 

Figure 17: Existing roads (yellow lines in A) and ALS-derived road network (red lines in B) overlaid on the 
topographic openness with elevation variation [Razak et al., 2011a]. 

• Data processing 
A number of methods to process the above data have already been mentioned. Many are 
unique to a given data type (to filter buildings from LiDAR data, or to correct geometric 
distortion in radar imagery). However, it was already mentioned that traditional image 
processing was largely based on pixel-based methods, i.e. where each square-shaped pixel 
would contain one or more data values (one for each spectral band). Processing individual 
pixels was also computationally efficient. However, with increasing image resolution, better 
availability of auxiliary spatial information (other thematic layers), and better process and 
feature knowledge, those methods have become less suitable. For decades there has been 
research already in texture-based processing (i.e. the consideration of pixel in their context). 
This has been very useful to identify landslides [Chang et al., 2006], as well as other EaR. 
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However, comprehensive identification and characterization of landcover and landuse (a 
plantation vs. a natural tree stand) features, distinction of objects with similar appearance (a 
road segment vs. a debris flow), and a contextual consideration of all EaR in an areas with 
respect to each other and present hazards, is better achieved with so-called object-oriented 
image analysis (OOA). 
 

  
Figure 18: (a) Building footprint extraction for parts of Tegucigalpa, Honduras, and (b) three segmentation and 
classification levels (close-up area indicated by box in (a)). Small objects, such as cars, are gradually removed in 
the rule-based classification stage, while at level 3 only whole buildings as semantic groups remain. (Source: 
Kerle 2011, unpublished material) 
 

OOA is based on the segmentation of any kind of spatial data (i.e. also radar images or 
digital elevation models) into homogenous units, in terms of variation in values used in a 
particular data set. In optical images this allows, for example, road sections, building elements 
or water features to be segmented, while in a DEM areas with little elevation change will 
results in segments. Those segments, which can be calculated at different spatial scales and 
which are hierarchically linked, are then classified [Blaschke, 2010]. In this step additional 
data layers (elevation, thematic datasets) and available feature or process knowledge is used. 
This allows roads to be separated from debris flows, or artificial from natural water features, 
or buildings from other urban elements. Not only do the results are more meaningful than in 
pixel-based analysis (a building is identified as such, instead of a group of unconnected pixel 
that are spectrally identified as concrete or clay, depending on the roof material). The 
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resulting objects (Figure 18) also implicitly contain object attributes, such as building size, or 
possibly type, if the knowledge inserted into the classification process allows such distinction. 
In landslide hazard assessment OOA has already been used to detect landslides [Martha et al., 
2010a] , but also EaR detection has benefited. Shamaoma et al. [2006] developed an OOA 
methodology in eCognition software that extracted buildings from a Quickbird image (ca. 1.6 
m multispectral resolution) of a complex urban landscape. The same approach was used to 
identify also different neighborhood types (formal, informal, central business district, etc.). 
The same dataset, together with LiDAR data, was used by Ebert et al. [2009], who used 
physical proxies (buildings) to extract information on not directly visible EaR (people) and to 
derive information on their social vulnerability. 

OOA is gradually becoming a widely-used tool in risk research, also being applied to 
radar images [Cruz et al., 2010], LiDAR data [Aubrecht et al., 2009] and scanned thematic 
maps [Kerle and Leeuw, 2009], which can be a useful source of EaR data. It is a powerful 
approach to map any kind of EaR that are imaged in a given dataset, or also the not directly 
visible ones via physical proxies. There are, however, also disadvantages. Currently only one 
commercial OOA software package, eCognition, exists, with availability not yet being very 
widespread. Additionally, eCognition operates with so-called process trees, where in 
programming-fashion a potentially large number of steps is executes, frequently also 
involving loops. Those steps enter the process or feature knowledge of the analyst into the 
analysis, and are frequently directly based on the actual image information. This means that 
most rulesets contain a large number of specific data thresholds and are tailored towards a 
specific case study. This severely limits their transferability to other areas or datasets.  
Additionally, for all segments created by the software a large number (>100) of spectral, 
geometric and contextual features are automatically created, which are then used in the 
knowledge-driven classification. Identifying the most useful of those features for a specific 
landcover class identification is not easy, again limiting ready implementation of existing 
research results in an operational context. However, research is ongoing on more objective 
segmentation and deriving thresholds automatically from the image data [Martha et al., in 
press-a], and on statistics-based identification of optimal feature [Stumpf and Kerle, in press]. 
 

4.3. REMOTE-SENSING DERIVED DATA FOR MODEL 
ASSESMENT AND VALIDATION 

[UPC] 

For the development of an analysis of the landslide risk, it is appropriate to follow several 
stages which result in different outcomes, usually landslide inventories, susceptibility maps, 
hazard maps and risk maps at several scales. Staging of the risk analysis may reduce the costs 
by limiting the most detailed zoning only to areas where is necessary [Fell et al., 2008]. 
Moving from a stage to the next one requires increasing amount and quality of data, and 
analytical effort. 
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In the last two decades, there has been a significant improvement of the techniques for 
data capture (remote-sensing), of the methodologies for data analysis and treatment, and in 
the availability of the computational resources. Thanks to these improvements it is nowadays 
possible to perform the quantitative risk assessment of landslides (QRA). Rapid development 
of new remote-sensing techniques (as LiDAR and SAR interferometry) and innovation of 
existing ones (satellite imaging with very high resolution) has multiplied the chance of 
landslide detection and characterisation over large areas, which has allowed increasing the 
amount and quality of landslide data (as it has been shown in the previous chapters).  

Recent development of remote-sensing is also extending to the modelling of landslides 
and to the validation of models. Analysis carried out a regional and local scale are typically 
performed using a statistical approach (particularly for the preparation of susceptibility maps) 
whilst physically-based models have been mostly used to estimate landslide hazard and risk at 
site-specific scale. 

Validation of models is essential for obtaining reliable predictions. There are a number 
of potential sources of error in the landslide zoning process. These include, for example, 
limitations in the landslide inventory upon which the susceptibility and hazard zoning maps 
are based; model uncertainty, meaning the limitations of the methods used to relate the 
inventory, topography, geology, geomorphology and triggering events such as rainfall to 
predicting landslide susceptibility, hazard and risk [Fell et al., 2008]. 

Model uncertainty is a fact of landslide zoning and none of the methods are 
particularly accurate [Fell et al., 2008]. Physically-based models are advanced methods which 
are suitable for site-specific risk assessment. However, the parameter uncertainty is large due 
to limitations in the knowledge of the stability conditions of the landslide (such as shear 
strength and pore pressures or boundary conditions) [Fell et al., 2008]. At regional or local 
scale, the assessment of susceptibility, hazard and risk maps involves a strong empirical 
component and a looser physical basis. Empirical models require a more rigorous testing of 
hypothesis, and, indeed, a continuous validation with new observations. 

The following lines intend to highlight how remote-sensing techniques can contribute 
to the assessment and to the validation of landslide models for quantitative risks analysis, both 
at the regional-local scale and at the site specific scale. 

4.3.1. Remote-sensing for the assessment of susceptibility/hazard maps at regional-
local scale 
 
The purpose to which the landslide zoning is to be applied, and the funds available, determine 
the scale of the risk analysis and the type and level of detail of the zoning [Fell et al., 2008]. 
The lowest level of analysis corresponds to susceptibility zoning, which usually involves 
developing an inventory of landslides which have occurred in the past together with an 
assessment of the areas with a potential to experience landsliding in the future [Fell et al., 
2008].  
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As it was mentioned above, recent developments of remote-sensing derived in an 
improvement on the data capture of landslides. Any improvement on the landslide 
inventories, including the run out distance and the intensity, should obviously enhance the 
accuracy of assessment of the landslide susceptibility. Landslide intensity may be expressed 
either as a displacement (total or differential) or as the velocity (or the kinetic energy) of the 
moving mass. Detection and characterization of new moving landslides is, however, difficult 
by using of airborne or spaceborne remote sensors, which are the most suitable at regional or 
local scales (see Deliverable 4.5). 

Quantitative analysis of landslide hazard is only feasible when (where) accurate data 
on frequency of landslides exists. To obtain landslide frequency a complete record of past 
landsliding events in the study area is required. Data on landslide occurrence are usually 
scarce. The most reliable records are those based on direct sources such as landslide 
inventories gathered by technical units. In many cases, however, the records have to be 
prepared using indirect sources (by dating landslides). The latter often produces incomplete 
landslide series that have to be combined with other sources of information, as the frequency 
of triggers. Where complete temporal series of landslides inventories are available, hazard 
assessment may not require prior landslide susceptibility analysis [Corominas and Moya, 
2008]. Nevertheless, landslide hazard maps are more commonly developed from 
susceptibility map with the areas classified according to the frequency of landsliding [Fell et 
al., 2008].  

Aerial photographs have been routinely employed for landslide inventories and for 
mapping new slope failures. Landslide inventories over defined time intervals may be derived 
from series of consecutive images. These series are particularly suited for the inventory of 
landslides associated to specific triggering events.  

Two sets of consecutive photographs bracket the age of landslides. The frequency of 
landslides may be calculated by counting the number of new landslides between consecutive 
sets of images and dividing by the time span separating the sets. This method provides valid 
estimates of the short term average frequency, though can seldom be used for a mid and long-
term because the average frequency may change with time.  

An image is a cumulative record of landslide occurrence over an undefined period of 
time before the image was taken. Thus, when using these data sets one must keep in mind 
that: (a) depending on the spatial resolution of the images, the smallest landslides may not be 
detected unless parallel field work is carried out, and (b) the time span is not the same for all 
the landslide types and sizes [Corominas and Moya, 2008]. On one hand, the deposits of 
smaller landslides are short-lived and they are easily eroded. Consequently, although several 
events triggering small-size landslides may have occurred since the occurrence of the largest 
landslides, they may have been overlooked during the interpretation of images because their 
deposits have been removed or are not discernible. Due to the censoring produced by the 
erosion, the observed small-size landslides represent only a small percentage of the original 
population. On the other hand, the landslide inventory might not reflect the activity in the past 
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of the existing landslides. The history of landslide reactivation events cannot be inferred from 
the image interpretation unless the displacement was large. 

Satellite optical images of very high resolution and radar images and airborne LiDAR 
images are being increasingly used for landslide detection. On one hand, spatial resolution has 
raised significantly with these three techniques. On the other hand, temporal resolution has 
increased from every few years, which is the typical of aerial photographs, to about a month 
of satellite SAR images, and to some days in the case high resolution satellite optical images. 
The spectacular increase of the revisiting time allows reducing the chance of landslide erosion 
or covering by vegetation, and, hence, allows for a more accurate assessment of the frequency 
of very recent landslides. In this sense, it is noteworth that images should be obtained as soon 
as possible after a major landsliding event [van Westen et al., 2008].  

Very high resolution imagery with stereo capabilities and resolution of 3 m or better 
(QuickBird, IKONOS, CARTOSAT-1, CARTOSAT-2) has become the best option now for 
landslide mapping from satellite images. However, the high costs may still be a limitation for 
obtaining these very high resolution images for particular study areas, especially for multiple 
dates after the occurrence of main triggering events [van Westen et al., 2008]. 

The increase of amount of images available encourages automatic analysis to detect 
landslides. Many developments have taken place in the last decade related to methods for the 
automatic detection of landslides (van Westen et al., 2008). Many methods for landslide 
mapping make use of digital elevation models of the same area from two different periods. 
The subtraction of the DEMs allows visualizing where displacement due to landslides has 
taken place, and the quantification of displacement volumes [Dewitte et al., 2008; Oka, 1988; 
van Westen and Getahun, 2003]. High resolution data from Quickbird, IKONOS, PRISM 
(ALOS) and CARTOSAT-1 are able to produce highly accurate digital elevation models that 
might be useful in automatic detection of large and moderately large landslides. 

It must be recognized that landslide zoning is not a precise science and the results are 
only a prediction of performance of the slopes based on the available data [Fell et al., 2008]. 
The greatest source of error in landslide susceptibility and hazard maps comes from 
limitations in the landslide inventory. Van Westen et al. [1999] and Ardizzone et al. [2002] 
point out that the greatest errors occur when inventories rely on air photo interpretation, 
particularly of small scale photography. These errors are in part due to the subjective nature of 
aerial photo interpretation but also to vegetation covering the areas to be mapped. Aerial 
photographic mapping should be supported by a surface mapping of selected areas to calibrate 
the mapping [Fell et al., 2008]. Obviously, surveys should be systematic. By visual 
interpretation of TerraItaly aerial ortho-photograhs and Ikonos satellite images of an area of 
Umbria (central Italy), Fiorucci et al. [in press] obtained 145% more landslides and 85% 
more landslide area than a pre-existing non-systematic field inventory, made driving and 
walking along main, secondary and farm roads.  

Susceptibility, hazard and risk maps must be validated to be reliable. A rigorous 
validation implies statistical test of hypothesis and checking of the predicted landslides. 
Validation should include review of the type, magnitude, intensity, location and occurrence 
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time of the predicted landslides. Susceptibility and hazard maps usually are carried out for 
specific types of landslides, in such way that volume and, to a lesser degree, intensity (i.e. 
susceptibility map of shallow landslides, susceptibility map of deep landslides, hazard map of 
rockfalls) are implicit in the map, and, therefore, these parameters can be considered as 
validated implicitly with the map (it seems acceptable at a regional scale of work up to a 
certain level, particularly for rapid landslides, for which the intensity is the velocity or a 
derived variable).  

For the validation of the location of landslides (spatial validation), the landslide 
inventory of the study area is randomly split in two samples. One of the samples is the used 
for the calibration of the model, that is to say for the preparation of the map, and the other is 
used for the validation. This type of validation is the currently applied for susceptibility maps, 
which does not include information on landslide frequency. 

The validation of hazard maps requires an additional test of the landslide frequency. In 
this case, the landslides of the two samples of the inventory must correspond to different 
periods. This type of validation is not as common as the spatial validation, due to the 
difficulty to obtain enough data on temporal occurrence to calibrate the model, but also to 
validate it. Some data of landslide occurrence can be incorporated by dating (particularly, 
using techniques of high temporal resolution, i.e., dendrogeomorphology) [Corominas and 
Moya, 2008] but it can seldom be applied to many of the landslides existing in a large study 
area. At this point is where the increased temporal resolution of satellite SAR imaging and 
satellite very high resolution optical imaging may contribute to hazard validation. Accurate 
data on occurrence of new landslides (both first-time and reactivations) can be gathered after 
the hazard map was completed, especially if imaging is obtained soon after major landsliding 
events, which may include hundreds to thousands of landslides. This approach is really only 
practical in areas with high frequency of landsliding because of the time frame required to 
gather performance data [Fell et al., 2008].  

Finally, there is a growing knowledge of climate change and the effects of this on 
rainfall and snowfall regime and on thickness of permafrost. For example, an increase of 
frequency of heavy rainfalls will probably increase the frequency of shallow landslides and 
debris flows in susceptible zones. This might also increase the susceptibility of some sites to 
shallow landsliding triggered by rainfall, this is because susceptibility levels are estimated 
empirically for a given area, within a given period of time and, consequently, for given 
climatic conditions. Change of frequency rainfalls triggering landslides due to a climatic 
change is possible in the future; this means this approach might not be applicable for temporal 
validation of hazard maps, but also means that remote-sensing monitoring for detection of 
new landslides is particularly necessary in areas where a change of landslide frequency can be 
foreseen. In this zones hazard maps should be updated every certain period to avoid 
underestimation of the risk but also overestimation. 
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4.3.2. Remote-sensing for the assessment of site-specific physically-based models 
 
Physically-based models of landslides may target to predict displacement rates, timing of final 
failures or the zones affected by long-distance runout deposition. Dependent on the model 
complexity typically several physical parameters are needed including in most cases the local 
geometry and parameters which characterize the material properties. The determination often 
requires model calibration that involves field work and laboratory work, whereas remote-
sensing data is only of secondary importance. Effectively, the soil properties and the slope 
hydrology, which are capital in physical modelling are also the most difficult to obtain, and 
remote-sensing has not proven to be a very important tool for these [van Westen et al., 2008]. 
Not surprisingly, the assessment and validation of these local and physically based models is 
performed also mainly in the field. However, for example debris flow runout modelling can 
benefit from remote-sensing derived DTMs with high resolutions [Stolz and Huggel, 2008] 
and remote-sensing data recorded shortly after the event may help to constrain the areas of the 
initial failure, runout distances or involved volumes [Scheidl et al., 2008].  

Other remote-sensing methods might help in certain cases for the assessment and 
validation of the models. Usually, the check can be focused in the comparison between 
displacements (or velocities) predicted by the model and the actual values measured in the 
field. In this last point, remote-sensing techniques such as DInSAR, GB-InSAR or LiDAR 
may help, expanding the classical techniques (surveying, GPS, inclinometers, wire 
extensometers, etc) and among several available studies the few examples are quoted here. 
The first one is the Vallcebre landslide [Gili, 2011]. In this translational complex slide, it has 
been demonstrated that the DInSAR gives reliable point movements that should be used as 
validation. Also the GB-InSAR technique has been applied to the measurement of a set of 
special corner reflectors spread in the lower part of the hill slope. These displacements can 
confirm the model that has been build up for Vallcebre [Corominas et al., 2005]. Another 
case is located in Portalet [Herrera et al., 2009], where terrestrial laser scanning, and GBSAR 
surveys have been carried out in order to calibrate and validate the forecasting model. The 
remote-sensing techniques present some clear advantages and some drawbacks that have been 
highlighted elsewhere. Only to note here that the temporal resolution (revisiting time) must be 
high enough in order to accurately follow the slide. As quoted before, the SAR techniques are 
suitable for slow to very slow movements, except if we can install a GB-InSAR continuous 
setup. The LiDAR and the High Resolution imagery can be used to follow slow movements 
as well. When the remote-sensing methods are adequate, one general advantage is the wide 
and almost continuous coverage of the phenomena. More recently Travelletti et al. [2011] 
presented a system based on multi-temporal photographs taken by a fixed terrestrial camera. 
They used a digital image correlation technique to gain detailed displacement vectors of the 
Super-Sauze mudslide. Compared to traditional in-situ measurements the technique has the 
advantage that it enables to reconstruct the movement of the complete surface and provides 
better base for model calibration and validation than point-wise measurements. 
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5. DISCUSSION 

5.1.  UPDATING STRATEGIES OF REMOTE-SENSING PRODUCTS 

5.1.1. For event-based landslide inventory mapping 
[ITC] 

Among (or within) landslide inventories we can typically distinguish three types of 
information sources, which are (1) event-based inventory mappings associated with a specific 
triggering event [Gorum et al., in press; Guzzetti et al., 2002; Lee et al., 2008; Malamud et al., 
2004], (2) historical (geomorphological) landslide inventories [Korup et al., 2004; Stark and 
Hovius, 2001; Van Den Eeckhaut et al., 2007], and recently more common (3) frequent 
updates to determine location and activity status of slow moving landslide that are not 
necessarily associated with a specific triggering event [Cascini et al., 2009; Cigna et al., 
2010; Farina et al., 2006]. 

Event-based landslide inventory mappings are crucial to understand relationships 
between triggers and landslides in terms of spatial patterns, intensity and temporal recurrence 
[Gorum et al., in press; Harp et al., 2010; Keefer, 1984; Rossi et al., 2010b; Witt et al., 2010]. 
They are generally more complete than paleo-landslide inventories and considered to be more 
reliable if remote-sensing data acquired immediately after the triggering event has been 
incorporated in their elaboration [Ardizzone et al., 2007; Fiorucci et al., in press; Galli et al., 
2008; Malamud et al., 2004]. 

Large triggering events typically induce significant surface changes at landslide-
affected and non-affected areas leading to a loss of signal coherence and restricting largely the 
use of interferometry and digital image correlation. Airborne LiDAR has demonstrated 
considerable added value for landslide mappings in the aftermath of large events [Ardizzone 
et al., 2007; Joyce et al., 2009; Lu et al., 2011] but is relatively costly to acquire for frequent 
updates. At present mainly optical remote-sensing, and increasingly VHR satellite images 
[Fiorucci et al., in press; Gorum et al., in press; Lee et al., 2008], are used for event-based 
mappings through visual interpretation. Submeter image resolution can be considered as 
sufficient for the preparation and updating of inventory maps at 1:10.000 and due to the 
increasing number of operational and scheduled platforms (Rapid Eye, Geoeye-1, Pleiades) 
imagery can be acquired quickly after any given event. Especially for rainfall induced 
landslides cloud cover is still a limiting factor in many cases (Figure 19). In the European 
context the performance of optical image acquisition can be optimized using weather forecast 
information on cloud cover, and for the Pleiades mission it has been considered to further 
implement an onboard system which reacts in near-real time upon the actual observed cloud 
cover [Beaumet et al., 2011]. 
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Figure 19: Total fractional cloud cover annual 
averaged from 1983-1990 according to the 
database of the International Satellite Cloud 
Climatology Project (ISCCP). 
Source: http://terra.nasa.gov/FactSheets/Clouds/ 
 
 
 
 
 
 
 
 

Though necessary image material becomes increasingly available its visual 
interpretation remains generally very time-consuming and is far from optimal for operational 
updating over large areas [comp. Ardizzone et al., 2007; Galli et al., 2008]. A number of 
recent studies on semi-automated image analysis and change detection methods have already 
focused on the development of more efficient ways for the creation of event-based landslide 
inventories [Di et al., 2010; Lu et al., 2011; Martha et al., 2010a; Martha et al., in press-b; 
Mondini et al., 2011; Stumpf and Kerle, accepted; Yang and Chen, 2010]. Though change 
detection methods consider implicitly the pre-event distribution of landslides, to the best of 
our knowledge none of those studies incorporated explicitly pre-existing landslide inventories 
in the analysis. For the semi-automated updating of inventories with interferometry a concept 
has already been laid out and tested [Cigna et al., 2010] but it is only partially applicable for 
event-based updates from optical data. 

Among other parameters inventories should ideally comprise information on the areal 
extent of each landslide and polygon-based representations of individual landslides are 
commonly used in European countries (see D. 2.3 for further details). The representation and 
updating of landslides as objects has a common ground with the concepts and issues 
encountered for the object-based updating of land cover information [McDermid et al., 2008]. 
The remainder of this section highlights some current issues and challenges for a conceptual 
framework toward a consistent fusion of pre-existing inventories and post-event information.  

Fig. 15 shows abstract types of change that can be encountered in event-based 
mappings, whereas pre-event information may arise from an earlier acquired image or a pre-
existing inventory. For event-based mappings we are particularly interested in newly triggered 
landslides and reactivations, which may manifest as the appearance, expansion and 
deformation, and alterations at the surface of a defined object (a landslide). 
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Figure 20: Abstract types of two-dimensional object changes and typical significance in the context of event-
based landslide mapping. In reality the abstract types may often overlap or occur in parallel at different parts of a 
landslide. 

Blaschke [2004] also suggested to incorporate dislocation of objects as a general type 
of change. Though, the displacement of mass is inherent to slope failures, a landslide as a 
whole does generally not completely change its location and hence we leave this 
unconsidered here. 
Appearance, disappearance or persistence (Figure 20) are the typical types of changes which 
are addressed in most of the proposed change detection by analyzing changes in the spectral 
values of individual pixels or objects [Hazel, 2001; Radke et al., 2005]. 
Surface alterations in terms of displacement can be measured with interferometry, multi-
temporal airborne LiDAR or and photogrammetry but - for abovementioned reasons – they 
are of limited applicability for event-based updates. In this context it is interesting to note that 
multi-temporal VHR optical images contain a significant amount of information about 
textural changes as indicators of recent 
activities. Such changes in the surface 
texture can generally be exploited well 
by an image interpreter even if color 
information remains similar (Figure 
16). The complementary integration 
into automated change detection has 
been previously suggested [Li and 
Leung, 2002] but has been explored 
relatively little in the context of 
remote-sensing [Bovolo, 2009; 
Lefebvre et al., 2008]. 

Figure 21: Example for changes in surface texture 
indicating the occurrence of a landslide while the color 
information remains very similar.  
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A number of change detection approaches has been developed and applied 
successfully to medium resolution satellite images whereas still many unsolved issues remain 
for their transference to VHR images. Major issues are an almost unavoidable residual 
registration noise, greater impact of changing illumination conditions and change noise 
resulting from variable acquisition geometries of the agile sensors. Several approaches target 
to make the image- based change detection more robust by incorporating the spatial context of 
changes [Bovolo, 2009; Bovolo et al., 2009; Dalla-Mura et al., 2008; Im and Jensen, 2005] 
but a number of conceptual questions remain for the integration of obtained information into 
an updated and consistent GIS database map. 

It remains for example unclear if the explicit integration of pre-existing inventories 
into the image analysis chain could help to enhance semi-automated mappings. It is easy to 
imagine that information on color and shape of earlier events would be a useful input for 
classifier training and the pre-existing inventory could also be useful input for the 
discretization of the image into objects.  

While such ideas need further investigations post-analysis integration of the obtained 
event-based mappings may at present remain the most practical approach. Considering 
uncertainties inherent in existing (mostly manual) mappings and remote-sensing-aided 
updates, objects from different time-steps will typically not overlap even if ground conditions 
did not change at all. This fact is illustrated for a multi-class example and land cover changes 
in Figure 22. In the updating of landslide inventories spurious sliver could lead to miss-
interpreting the landslides activity according to changes in size and shape (Figure 20). 
Statistical analysis of the size distribution of change objects has been suggested as a possible 
tool to choose a reliable cut-off for the minimal mapping unit [Linke and McDermid, 2010]. 
Considering for example retrogressive slop failures which typically induce rather small 
extension in the landslide boundaries it seems difficult to choose an appropriate threshold for 
“real changes”. 
 

 
Figure 22: Object-oriented backdating and updating for the construction of time series maps representing 
temporal and spatial changes. Spurious effects of mismatches (slivers) between reference objects can be 
addresses by defining a minimum mapping width [figure from McDermid et al., 2008].  
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There is still, however, a general difficulty to reliably define and extract individual 
slope failures with remote-sensing aided event-based mappings. A common issue is for 
example the convergence of landslide along their travel path (Figure 1, 2). In many cases it 
might still be possible to estimate the number of individual source areas, whereas the 
attribution of an area to each source poses serious conceptual problems. At present there is no 
common agreement if the magnitude of a landslide event is better expressed in terms of 
number, area or volume of the landslides. Via an empirical relationship Guzzetti et al., [2009] 
derived volumes from the landslide area and used this measure to indicate the event-
magnitude, whereas other researchers preferred the use of the number of landslides [Malamud 
et al., 2004]. Similarly for susceptibility models the landslide density is often introduced in 
terms of number of landslide per unit [Guzzetti et al., 2006; Van Den Eeckhaut et al., 2009], 
whereas the relative area per spatial unit appears to be an at least equally well suited 
descriptor [Lee et al., 2008]. Recently it has been suggested that for co-seismic landslides, the 
area density shows better correlation with the trigger than the landslide number, and that the 
landslide number in fact contains less information than the affected area [Meunier et al., 
2011]. For the derivation of magnitude-frequency curves it remains essential to obtain reliable 
estimates of landslide numbers and object-oriented methods have shown their potential to 
extract meaningful quantities from VHR images [Barlow et al., 2006; Lu et al., 2011; Martha 
et al., 2010a]. The success of such methods still depends to a large degree on the appropriate 
parameterization according to the image type and the respective study areas. In situations 
where the task of remote-sensing is mainly the detection of affected areas more generic 
sample-based approaches can be employed [Mondini et al., 2011; Stumpf and Kerle, 
accepted]. 

5.1.2.  For long-term landslide monitoring at hot spot areas 
[UNIFI] 

Monitoring means the comparison of landslide conditions like areal extent, speed of 
movement, surface topography, soil humidity from different periods in order to assess 
landslide activity [Mantovani et al., 1996]. The measurement of superficial displacements 
induced by a slope movement often represents the most effective method for defining its 
behavior, allowing the observation of response to triggering factors and the assessment of 
effectiveness of corrective measures [Farina et al., 2006].  

Different techniques are available for measurements of the ground displacements, 
starting from the traditional inclinometers, extensometers, topographic surveys, until more 
recent applications such as GPS, aerial photogrammetry, LiDAR measurements [Angeli et al., 
2000; Gili et al., 2000; Kääb and Vollmer, 2000; Malet et al., 2002; McKean and Roering, 
2004]. 

Remote-sensing images represent a powerful tool to measure landslide displacement 
as they offer a synoptic view that can be repeated at different time intervals and available at 
various scales. In Delacourt et al. [2007] a DInSAR technique and optical correlation method 
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for displacement measurements are described. Interferometric SAR is the techniques most 
researched during the last decade for slope motion monitoring [Metternicht et al., 2005]. 

The monitoring of landslides by means of optical imagery can be performed 
correlating optical data. This methodology has been used to measure displacements not only 
for landslides [Casson et al., 2005; Delacourt et al., 2004] but also for earthquakes [Van 
Puymbroeck et al., 2000] and glacier flow [Berthier et al., 2005; Kääb, 2002; 2005; Scambos 
et al., 1992]. 

The correlated images have to share a common (ground or image) geometry which is 
obtained either by orthorectifying both images (the correlation is performed in the ground 
geometry) or by resampling a secondary image in the geometry of a reference image 
(correlation performed in the image geometry) and the availability of a DEM with high 
accuracy is mandatory and the measured shift in the two optical images is linked to the 
ground displacement by the pixel size [Delacourt et al., 2007]. 

Application of the image correlation technique can be found in in Delacourt et al. 
[2004] which propose to use aerial photographs and Quickbird imagery to monitor landslide 
displacements. In particular in Delacourt et al. [2004] a very interesting technique based on 
optical correlation of aerial photographs (for time baselines that require imagery previous to 
the launch of the Quickbird satellite) and Quickbird imagery is presented. In Hervas et al. 
[2003] an image-processing method to map and monitor landslide activity using 
multitemporal optical imagery has been proposed. Basically this approach proposes the use of 
very high resolution images (e.g., Ikonos or Quickbird type) acquired at different dates. The 
method consists on image orthorectification, relative radiometric normalisation, change 
detection using image difference, thresholding and spatial filtering to eliminate pixel clusters 
that could correspond to man-made land use changes. In Yamaguchi et al. [2003] SPOT 
imagery have been used to detect the rate of movement of an active slow landslide located in 
Itaya area in Northern Japan. 

Main limitation on the use of optical satellite images in landslides monitoring rely on 
the atmospheric effects, meteorological condition, sun illumination and orbital parameters; 
moreover the availability of archived VHR acquisitions is very limited and the temporal 
resolution is not always suitable as it around 20 days and only in specific conditions it can be 
reduced to few days on demand, moreover the different solar conditions of the two 
acquisitions and on the variation of surface state due to vegetation growth and anthropic 
modifications can invalidate the results.  

Both Differential SAR intererferomtry (DInSAR) and multi interferograms SAR 
Interferometry (A-DInSAR) such as PS [Ferretti et al., 2001] can be used for landslide 
monitoring. Rott [2004 ], Paganini [2004] and Singhroy [2002] summarize the potentials and 
opportunities of space-borne SAR sensors for monitoring slope instability as follows: 

a) detailed motion maps produced from C-band, whether using techniques such as PSI 
(Persistent Scatterers Interferometry), DInSAR or InSAR, can assist in more accurate 
slope stability studies. When the conditions are favourable (e.g., coherence, imaging 
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geometry) C-band SAR interferometry is a useful tool for mapping and monitoring 
mass movements; 

b) if SAR time series are available, accurate analysis of displacement is possible using 
PSI technique. Successful mapping of continuos slow landslide movements has been 
achieved using multi-temporal DInSAR techniques. Movements of -5 to 5 mm/year 
have been detected; 

c) the access to archived SAR data (e.g., in excess of 10 years) is useful to study 
temporal variations of motion that enable assessing slope stability, complementary to 
other information; 

d) future SAR systems with higher spatial resolution (e.g., Radarsat-2, TerraSat-X, 
COSMO-SkyMed) will enable the mapping of smaller slides. With the PSI 
technique, the movement of small objects (e.g., down to about one square meter) can 
be monitored. 

 
Though it looks promising as a technique for monitoring landslides, the characteristics 

of the currently operational satellites put strong constraints on the use of DInSAR as a 
monitoring instrument. In particular the spatial resolution of the SAR images, the time-
interval between the successive passages of satellites and the wavelength of the radiation are 
unsuitable for a systematic monitoring of relatively rapid movements, concentrated in small 
areas and on steep slopes or narrow valleys [Refice et al., 2001; Rott et al., 2000 ]. 
Quantitative information on landslide activity can be obtained in the case of extremely slow 
movements (velocity less than a few centimeters per month), affecting large areas with sparse 
vegetation [Fruneau et al., 1996; Kimura and Yamaguchi, 2000; Rizzo and Tesauro, 2000; 
Rott and Siegel, 1999]. 
 

Figure 23: Average 
revisit time (in days) 
across the world for the 
Sentinel-1 constellation: 
Ttwo satellites in 12-day 
repeat orbits with 250 km 
swath widths. The blue 
around the equator 
reflects the 3-day revisit 
period, improving 
towards the poles. 
Source: esa bulletin 131 - 
august 2007 
 

The temporal scale is controlled by the time interval between the successive 
acquisitions. The passage rate of the present satellites over the same area range between 11 
days for TerraSAR-X, 24 days for RADARSAT and 35 days for ENVISAT. Recently 
launched SAR missions such as the Japanese ALOS, the German TerraSAR-X or the Italian 
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COSMO-SkyMed program, seem to meet the operational requirements for an effective and 
systematic monitoring of slope movements. Furthermore, within ESAs GMES Sentinel 
program the launch of the first of two SAR satellite is scheduled for 2013. This should ensure 
the continuity of C-band SAR observation from ERS-1, ERS-2, Envisat and Radarsat and up 
to daily revisit intervals (Figure 23). The complete database will be available free online and 
may provide an inexpensive alternative for many long-term monitoring tasks. 

An extensive body of studies documents the use of DInSAR and PS-InSAR for 
landslide monitoring [Berardino et al., 2003; Colesanti et al., 2003; Farina et al., 2006; 
Meisina et al., 2007; Singhroy and Molch, 2004; Strozzi et al., 2005] and in many cases the 
A-DInSAR data have been integrated with in-situ monitoring instrumentation (Pancioli 
[Farina et al., 2006; Pancioli et al., 2008]. The joint use of satellite and ground-based data 
assists the geological interpretation of the landslide and allow the better understanding of 
landslide geometry and kinematics. 
 
5.1.3. For hazard and risk assessment 

[UPC] 

As quoted in section 4.3.1, the empirical models require a more rigorous testing of hypothesis, 
and, indeed, a continuous validation with new observations. This will make the models more 
robust, and permits to follow the temporal evolution of the risk On the other hand, when the 
remote-sensing methods are suitable for a given model assessment, it is mandatory to obtain 
the new images as soon as possible after a new critical situation has occurred. In this sense, 
the development or adaptation of some sensors to airborne platforms would permit to fly over 
a given area short after the landsliding event. For the long term assessment of detailed zones 
with SAR techniques, the installation of corner reflectors should be considered. A more 
detailed analysis of these strategies and the current restrictions on the use of remote-sensing 
data is provided in the deliverable D4.5. 

 

5.2. REINFORCING THE LINKS BETWEEN QRA AND REMOTE 
SENSING  

   
Remote-sensing has already become an indispensable source to create and update landslide 
inventory and deformation maps, and especially on regional scale provides valueable inputs 
for hazards and risk assessment. A multitude of studies has focused on the validation of 
remotely sensed inventory and displacement maps against manual image interpretation and 
field surveys. As a general conclusion it can be stated that remote-sensing techniques 
complement and enhance existing maps and typically yield higher mapping accuracies and 
coverage than could be achieved with field work and in-situ measurements alone. However, 
to which degree the enhanced map products affect the outcome of hazard and risk assessments 
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remains to be investigated in a systematic manner and could not be addressed in the work 
package so far. 

When using remotely sensed inventory and displacement information as an input for 
QRA it is important to understand the potential spatial and/or temporal biases that each sensor 
technology comprises. This includes issues such as the occlusion of particular terrain parts, 
lower detection rate with certain land cover types or thresholds on terrain parameters used in 
the detection workflow. Technolgical limitations can be partially compensated using multiple 
complementary sensor systems for the same area, or by adjusting the risk assessment strategy 
according to the know biases of the mapping methods. For a general overview of the potential 
uncertainties in input datasets we also wish to refer to chapter 2 of the SafeLand Deliverable 
D2.8 (Recommended Procedures for Validating Landslide Hazard  and Risk Models and 
Maps) and to fact sheets in SafeLand Deliverable D4.4 that summarizes the advantages and 
limitations of the available techniques. 

To enable an informed use of remote-sensing based maps it is generally desirable to 
provide remote-sensing products together with uncertainty estimates to the potential users. 
Information about the spatio-temporal coverage and accuracy of inventory and deformation 
maps maybe expressed in additional visibility maps (Cascini et al. 2009), standard errors of 
the measurements or similar uncertainty measures. Evidence from multiple sensors and/or 
image classification techniques can also be combined and yield probability maps instead of 
binary inventories. In this context it might be interesting to test if a seamless intergration of 
such probability maps in QRA is feasible and usefull. 

As deformation maps and inventory maps become available at increasing temporal 
resolution the question arises at which frequencies hazard and risk assessment should be 
repeated and how an optimal repetition rate can be determined in the regional context. Space-
borne derived deformation maps are at present mainly used to complement existing 
inventories and to better understand the ongoing processes in active landslides. In hot-spot 
areas where the landslide associated risks justify continoiuously repeated acquisitions of new 
microwave and optical images available time-series can be extended. Frequent image 
acquisition campains, however, should be accompanied by the installation of operational 
sytems that implement data analysis techniques such as described in this document largely 
automated. Resulting frequently updated map products can than be used for QRA as an 
intermediate tool between static maps and early warning systems. 

Vice versa the quantitative outputs of hazard and risk assessment should guide the 
elaboration of observational campains. From socio-ecenomic standpoint considering short- 
and medium term developments the obserrvations should certainly be focused on areas where 
landslide related risks are highest (see in this context D2.10 Identification of landslide hazard 
and risk "hotspots" in Europe). However, also low risk areas (i.e. areas with low socio-
economic values) should be considered in the planning of sattelite missions and flights 
campains to support further investigations toward a better process understanding and hold 
information available for areas that are relevant for environmental protection and long-term 
socio-economic activities. 
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Concerning the updating frequencies of the data input for QRA chapter 5 in D2.4 
(Guidelines for landslide susceptibility, hazard and risk assessment and zoning) provides a 
general overview desirable updating intervals for regional assesments. In general it must be 
noted that more dynamic factors and/or more dynamic environmental conditions require also 
higher observation frequencies. 
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6. CONCLUSION 

[ALL] 

This deliverable provides a comprehencise view on the latest developments of remote-sensing 
technologies as applied for the creation and updating of landslide inventory and deformation 
maps by the members of the SafeLand workpackage 4.2. Furthermore, chapter 4 gives a broad 
overview of input datasets for hazard and risk assessment that can be obtained through remote 
sensing, and in chapter 5 suitable updating strategies as well as steps toward a better linkage 
between the recent technological developments and QRA methods are discussed. 

Considering the increasingly large fleet of remote-sensing sattelites operated by space 
agencies and private companies, and the increasing widespread of aerial and terrestrial sensors 
at constantly decreasing costs, the remote-sensing of landslides and risk related information  
encounters generally favourable data availability. One exception is currently the segment of 
L-band spaceborne SAR that has been demonstrated as a valuable tool for the monitoring 
surfaces that induce a loss of coherence with C- and X-band techniques [Strozzi et al., 2005]. 
With the failure of the ALOS satellite earlier this year no L-band satellite is currently 
operational and the launch of ALOS 2 with similar capabilities will take place in 2013 
earliest. Meanwhile more frequent observations of constellations of C-band and X-band 
satellites may be able to fill this gap. 

It is expected that LiDAR sensors will become a standard tool for landslide 
investigations, and if the current trend persists most of the industrialized countries will obtain 
full coverage aerial LiDAR DEMs within the next 10 years. While it can be expected that 
remaining computational issues arising from large point cloud analyses will be solved as 
computational time becomes cheaper, but many conceptual questions on the integration of 
HRDEMs in hazard and risk assessment remain [Jaboyedoff et al., 2010]. 

A full exploitation of the daily recorded images will not only depend on the 
implementation of operational processing sytems but also on an easy data access and 
exchange via European and international networks such as GMES and GEOSS. The 
International Charter on Space and Major Disasters has already demonstrated the advantages 
of a more liberal data exchange in the aftermath of major disasters. Analogous initiatives to 
open data archives including comprehensive time-series to a broader group of potential users 
appear desirable. Similarly to issues concerning easy data access, the availability of high 
quality software tools for the ectraction of the required information is of at least equal 
importance. Besides proprietary software and in-house algorithms of private companies, many 
of such toosls are also freely available on the web. This includes software for SAR 
interferometry (ROI_PAC), open source projects with general GIS and raster processing 
capabilities (ILWIS). One of the most remarkable examples is probably the ORFEO (Optical 
and Radar Federated Earth Observation) toolbox which includes wide range of state of the art 
image processing tools and sensor specifications. 
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Major challenges for the further development of analysis methods are the intergration 
of multi-modal and multi-temporal remote-sensing datasets with existing inventory databases 
and in situ measurements. The four case studies in chapter 3.4.2 specifically address the 
combined use of data from different platforms and sensor types and further studies in this 
direction would most certainly benefit from the complemenatry information recorded by 
different sensor technologies. Modern spaceborne DInSAR techniques and many terrestrial 
techniqeus already rely on the analysis of longer time series, whereas only recently optical 
sattelite images become more frequently used for the assement of long-term landscape 
dynamics in landslide affected areas areas [Chuang et al., 2011; Lin et al., 2010a; Lin et al., 
2010b; Liu et al., 2010]. Constantly growing image archives also lead to an increased research 
interest in algorithms for the systematic mining of satellite image time series and spatio-
temporal clustering [Petitjean et al., 2010]. 

Finally it should also be mentioned that the great success of collaborative mapping 
projects such OpenStreetMap has raised a broad public and academic interest in the 
application of crowd-sourcing for many applications such as the monitoring of transportation 
networks, the collection of information during disaster response phases or conflict 
management [Goodchild, 2010; Heinzelman et al., 2011; Heipke, 2010]. Examples for the 
application of such community based platforms during landslide disaster already start to 
appear on the internet (http://www.gawana.com/peru/ushahidi/). They should be explored as 
they could yield a valuable information source that may complement “traditional” remote-
sensing techniques. 
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