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SUMMARY 
 
This deliverable presents statistical and empirical models for predicting critical 
meteorological elements and their thresholds for triggering of landslides at local and regional 
scales. The models are evaluated using rainfall data and landslide observations from five 
datasets from France, Switzerland, Italy and Norway. The general conclusions of the 
evaluations are: (i) the analysis of hourly data, when available, indicates that the duration of 
triggering storms for initiating debris flows is less than 12 hours; (ii) in soil slides, the 
antecedent moisture conditions play an important role in the triggering conditions, and 
therefore should be accounted for in the threshold models; these antecedent conditions can be 
characterised by the soil moisture or other equivalent proxies, such as long-term precipitation 
and water supply; (iii) the contribution of snow melt to the of the water supply conditions on a 
slope should be evaluated, as it can be significant for characterising both antecedent and 
triggering conditions; (iv) freeze-thaw effects should be incorporated in the assessment of 
thresholds for rock falls and rock slides in order to reduce the misclassification errors for this 
type of landslides; (v) the variations of thresholds in different locations are mainly due to 
differences in lithological conditions, and in the case of soils the variations in permeability 
and depth of sediments; the soil moisture conditions (and the corresponding proxies in the 
threshold models) in areas with deep deposits of fine-grained soils (low permeability) are 
affected by long term precipitation or water supply; in areas with shallower deposits of 
coarse-grained soils (high permeability), the response of the ground water conditions to 
precipitation and water supply is faster, and therefore the thresholds are controlled almost 
solely by short-term precipitation or water supply. 
 
The application of models at a local scale to the La Frasse dataset (Switzerland) demonstrates 
the potential for integrating field measurements of landslide displacements and rainfall 
observations for effectively performing forward predictions. The Barcelonnette dataset 
(France) was assessed for thresholds for debris flows and soil slides, which indicated 
triggering durations in the range of 1-9 hours, and 3-17 hours, respectively. An intensity-
duration threshold was sufficient for debris flows, but for soil slides, an intensity-antecedent 
precipitation-duration threshold was necessary to achieve improved performance. The critical 
antecedent precipitation corresponded to 23 days. At a regional scale, antecedent precipitation 
models were also applied to datasets from two locations in Norway using daily rainfall 
observations. The results from this model indicate that 1-day and 7-day antecedent 
precipitation are critical for debris flows and soil slides in a case study in Western Norway, 
while 46-day antecedent precipitation is critical for earth slides in a selected case study in 
South-Eastern Norway. The assessment in Western Norway indicated that the occurrence of 
rock slides and rock falls is weakly associated with rainfall parameters, suggesting the 
necessity of incorporating other relevant effects, such as freeze-thaw conditions. Modelling of 
the occurrence of debris flows requires the use of rainfall observations with a high sampling 
rate (e.g., hourly). The FLaIR model was calibrated successfully for predicting triggering 
conditions for soil slides in the Barcelonnette basin, and in three case studies in Italy. The 
appendices present experiences of parallel studies that clearly indicate that water supply 
(precipitation combined with snow melt) can be a critical parameter for threshold evaluation. 
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1 OVERVIEW OF THE WORKPACKAGE 

The following presents an overview of the WP. 

1.1 OBJECTIVES 

Evaluate the reliability of statistical and empirical models for predicting critical meteorological 
elements and their thresholds for triggering of landslides at the local and regional scale. This WP, 
integrated with WP1.2, provides a complete set of tools for prediction of landslides induced by 
weather, with particular reference to climatic changes, furnishes input for early warning systems 
and identifies the key parameters that should be focused on in the climate change scenarios. 

1.2 DESCRIPTION OF WORK 

Selected statistical and empirical models will be used to identify the most important critical 
meteorological elements and the thresholds of the elements responsible for the triggering of 
landslides at the local and regional scales. The models will be tested on rich datasets from several 
sites to enable a direct comparison of the model results (benchmarking). This dataset will be 
essentially provided partners through monitoring of the established test sites, but can include also 
data from the literature and from other sites. In particular, the model results will be compared using 
a set of in terms of the goodness and uncertainty of their predictions under the assumption that the 
models are implemented in an early warning system. The WP will comprise the following tasks. 

1.2.1 Task 1: Identification of models most suitable for the testing 

The models most suitable for testing will be identified from the literature. The selected models must 
a) handle either of the two scales under consideration – i.e. the local and the regional scales – or 
both scales, and b) must be able to identify both the most critical meteorological triggering elements 
as well as the element threshold. The selected models will include artificial neural networks, 
regression analysis, classification trees and logistic regression. They will be carefully tested through 
data provided by literature and monitoring, in order to assess their reliability in different 
geomorphological and environmental situations, even very different from those for which they have 
been conceived and developed. 

1.2.2 Task 2: Defining a set of evaluation criteria for model comparison 

The evaluation criteria to compare the models by must assume that these are a part of an early 
warning system. This means that the models should identify various levels of alarm stages (e.g. 
alert, warning, and evacuation) with a minimum number of false alarms and missed alarms and a 
maximum number of correctly predicted alarm stages. With the optimised evaluation criteria, a set 
of critical meteorological elements and their thresholds are obtained. Available data, concerning for 
instance the Sarno site in Italy, where an early warning system is active, or other sites, can be used 
for testing of the reliability of the procedures associated with the different systems. The comparison 
of different methods might enable to assess what could have been happened during weather crises, 
if one system or another would have been used. 

1.2.3 Task 3: Model evaluation 

The responsible institutes will use their models to produce a set of the most important critical 
meteorological elements, the threshold values and the resulting optimised evaluation criteria as 
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defined in Task 2. Based on these results the models will be compared over the different scales and 
test sites.  

1.3 DELIVERABLES 

D1.5 – Statistical and empirical models for prediction of precipitation-induced landslides. 
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2 MODELS SUITABLE FOR TESTING 

This chapter gives an overview of the models that were deemed suitable for testing, and describes 
the work carried out in Task 1.  

2.1 GENERAL REQUIREMENTS 

2.1.1 Scale 

The models tested must handle prediction of events at two scales: a) local scale and b) regional 
scale. That is, the same model setup must be able to handle both scales. However, the input data and 
resulting meteorological elements and associated thresholds can of course be different at the two 
scales.  

2.1.2 Triggering elements 

The models must be able to handle data of the most usual meteorological elements associated with 
landslide events. The following list includes some of these elements: 

 Precipitation (hourly, daily, summed values). 
 Temperature (hourly, daily, min, max). 
 Snowmelt. 
 Wind speed and wind direction. 

In addition, the models must be able to handle the combination of at least two of these triggering 
elements, for example a long term precipitation threshold combined with a short term precipitation 
threshold.  

2.1.3 Alarm stages 

If the tested models are coupled with meteorological forecasts, they can be part of early-warning 
systems for managing landslide risk (Keefer et al. 1987). In order to achieve this, it is proposed that 
the tested models should be able to predict four alarm stages as indicated in the table below.  

Table 1. Alarm stages for model results. 

 Organisational consequence Probability of triggering
Green None <5% 
Yellow Alert 5-20%
Orange Warning 20-50%
Red Evacuation >50% 

2.1.4 Penalty weights for falsely predicted alarm stages 

The models must be able to incorporate penalty weights for wrong prediction of alarm stages. The 
weights for falsely predicted alarm stages are given in chapter 3.  

Since not all available datasets have these alarm stages, weights differ between the datasets. 
Weights for each dataset are described in chapter 4. 
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2.1.5 Input to climate change models 

In order to predict possible future changes in landslide frequency, meteorological elements and 
associated triggers should be able to be used in conjunction with climate change models.  

According to communication with colleagues in SafeLand working with climate change models, the 
models to be used in SafeLand are able to produce data with the following characteristics: 

 Temporal resolution: Hourly values are stored. 
 Spatial resolution: 10 km or 25 km. This can be further aggregated or be reanalyzed using 

spatial statistics.  
 Thresholds in absolute values can be used as input. 
 Thresholds from multiple meteorological elements can be used with the models. 

Hence, there appears to be no major restrictions in the type of thresholds that are the outcome of the 
tested models. 

2.2 CONCEPTUAL DEFINITION OF A THRESHOLD 

For the purposes of this report, the following definitions are established: 

 Meteorological element (ME): a value or statistic that can be directly obtained from: 
o readings at a meteorological station, 
o weather forecasts, 
o climate model predictions, 
o remote sensing devices (radar, satellites). 

The value should be in “raw” conditions, i.e. it should not be the result of the application of 
empirically calibrated functions to a set of meteorological elements. Examples of 
meteorological elements: peak 3-hour precipitation, observed daily precipitation, storm 
duration, 30-day accumulated precipitation, 24-hour forecasted precipitation, minimum 
temperature, wind speed, wind direction, differences in snow depth, NASA’s TMPA data, 
etc. An example of a value that, in this context, is not considered as a meteorological 
element is snowmelt estimated using both empirically calibrated functions and observations 
of temperature and wind speed. 

 Meteorological event: a continuous occurrence of meteorological elements that is bracketed 
in time based on conventional criteria. For example, it can be defined as a continuous period 
during which the hourly precipitation has been greater than 1 mm. 

 Time element (TE): a categorical or continuous variable that describes the time or season of 
the year when a meteorological event takes place. Possible choices of time elements are: the 
Julian date (JD), the Julian day number (JDN), the season of the year, month, etc. 

 Meteorological-Time set of elements (MTS): is the combination of a selection of 
meteorological and time elements that characterise a meteorological event. A very common 
choice of MTS is: date, time, duration (D) and mean precipitation intensity (I). 

 Landslide incidents (LI): is a continuous or categorical variable that describes the 
occurrence, extent, type and size of landslide events associated to a meteorological event. 
For example, this variable can be associated to the categories or classes: “no landslides”, 
“debris flows”, “rock falls”, “rock falls and debris flows”, etc. The categories can also 
include linguistic descriptions of the extent of occurrence (“single”, “few”, “many”, 
“abundant”) and size (“small”, “moderate”, “large”). These categories can be associated to 
numerical ranges of frequency and volume. In its simplest form, this variable can be 
associated to a binary result: “no landslides” or “landslides”. 
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 MTSLI time series: a collection of a Meteorological-Time set of elements (MTS) and 
Landslide Incidents (LI) in a region during a period of observations. 

 ME space: is an m-dimensional space, where m is the number of meteorological elements 
(ME) in a MTSLI time series. The most usual ME space is a 2D space (m = 2) for 
representing mean precipitation intensity (I) and duration (D). 

 Threshold (Th): is a boundary separating regions in an ME space based on the classification 
of an MTSLI time series using the Landslide incidents (LI) variable. In most of the cases, 
only two meteorological elements ME are used, so the ME space is a coordinate plane and 
the threshold is a curve. In particular, if only the non-occurrence and occurrence cases (LI = 
“no landslides” or LI = “landslides”) are considered, a threshold is a curve separating 
meteorological events that triggered (one or more) landslides from those that did not trigger 
any. 

Depending on the available classes of meteorological events, thresholds can be estimated as: 

 Only occurrences of landslides: the threshold is a lower bound to the meteorological events. 
See Figure 1a. Examples: Caine (1980), Crosta (1998) and Guzzetti et al. (2007; 2008). 

 Only non-occurrences of landslides: the threshold is an upper bound to the meteorological 
events. See Figure 1b. Examples: Cannon and Ellen (1988). 

 Both, occurrence and non-occurrences of landslides: in this case, the threshold is a boundary 
separating the two classes. See Figure 1c. Examples: Wieczorek and Sarmiento (1988) and 
Jakob (2009). Some authors have estimated thresholds by fitting curves to the occurrence 
class (Rodolfo and Arguden 1991; Van Westen and Daag 2005). 

From Figure 1, it can be noted that a threshold may not classify correctly all the meteorological 
events. Events with observed landslides (“+” in Figure 1) and located below the threshold are 
missed events, while events with no landslides (“-“ in Figure 1) and above the threshold are false 
alarms. One of the main challenges in the estimation of thresholds is to achieve an optimum 
performance such that both missed events and false alarms are minimised as much as practical 
operational conditions allow (i.e., in the framework of an early-warning system). The assessment of 
the performance of thresholds is further discussed in section 2.3.7. 



Deliverable 1.5 
Statistical and empirical models for prediction of precipitation-induced landslides 
 
 

Project No.: 226479 Page 12 of 159

 
Figure 1. Types of thresholds based on the available classes of meteorological events: (a) 

Only landslide occurrences available; (b) only non-occurrences available; (c) 
both occurrences and non-occurrences are available. For simplicity, a threshold 
based only on two meteorological elements (ME) is shown. The proportion of 
“landslide” events in relation to “no landslides” events is usually very small and 
does not correspond to the proportion shown in (c), which is presented for 
illustration purposes only. Adapted from Cepeda and Devoli (2008). 

If more than two classes are defined for the variable LI, then more than one threshold can be 
estimated. As an example, Figure 2 shows the set of thresholds proposed by Lumb (1975). The 
classes “Isolated”, “Minor”, “Severe” and “Disaster” were established based on the number of 
landslide observations and using limiting values of 1, 10 and 50 events. Note that, in this case, the 
meteorological elements (ME) are 1-day rainfall and 15-day rainfall. 
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Figure 2. Thresholds for Hong Kong based on the combination of 1-day and 15-day 

rainfall (Lumb 1975) 

Data mining and pattern recognition techniques can be useful for prediction of extreme precipitation 
events (Dhanya and Kumar 2009). A number of useful references on pattern recognition and data 
mining can be identified in the literature (Jain et al. 2000; Chen et al. 1996; Cortes and Vapnik 
1995; Burges 1998; Jain et al. 1999; Fayyad et al. 1996) 

In the estimation of thresholds, antecedent precipitation has a predominant importance since it 
controls initial groundwater conditions before the onset of a landslide-triggering rainfall event. The 
first author to note effects of antecedent precipitation was Campbell (1975). The time interval that is 
critical for the calculation of antecedent precipitation is a matter of debate (Rahardjo et al. 2001; 
Wieczorek and Glade 2005). 
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2.3 CLASSIFICATION TECHNIQUES 

2.3.1 Visual 

The earliest estimations of thresholds classified events based on visual inspection of the data and 
using constant thresholds or power-law forms. Some key references are Lumb (1975), Caine (1980), 
Larsen and Simon (1993), among others. 

2.3.2 Linear regression 

Estimations of thresholds for landslides in active volcanic settings have usually fitted least-square 
curves to landslide-triggering rainfall events. Many of these landslides are not initiated as a rupture 
in the terrain but as a gradual sediment-bulking of erosion runoff. Important references are Rodolfo 
and Arguden (1991) and van Westen and Daag (2005). These authors have estimated thresholds for 
active volcanoes in the Philippines. 

2.3.3 Logistic regression 

The logistic regression model predicts the probability of occurrence of a landslide-triggering rainfall 
by fitting the precipitation observations to a logistic curve. Frattini et al. (2009) have employed this 
model for estimations of thresholds in northern Italy. 

2.3.4 Discriminant analysis 

The aim of a discriminant analysis is to find a linear function that combines several parameters 
(e.g., rainfall parameters) and enables the separation of two or more classes of events (e.g., non-
landslide triggering and landslide triggering). This model has been used for estimation of thresholds 
in British Columbia, Canada (Jakob and Weatherly 2003; Jakob 2009). 

In the implementation of a discriminant analysis, it is possible to assign values of prior probabilities 
to the classes of observations. The sum of the prior probabilities of the classes is 1. In practice, 
these prior probabilities operate as weights of the classes. For example, a prior probability of 0.9 to 
landslide-triggering events (and thus, 0.1 to non-triggering events) will produce a conservative 
classification (a threshold) that gives preference to reducing the number of missed events, but 
lowers the priority to the reduction of false alarms. In the opposite case, a prior of 0.9 to non-
triggering events (and thus, 0.1 to landslide-triggering events) will produce a non-conservative 
classification (a threshold) that gives preference to reducing the number of false alarms, but lowers 
the priority to the reduction of missed events. The default choice is to assign the same prior 
probability to both triggering and non-triggering events (i.e., both are 0.5). Varying the prior 
probabilities in the evaluation of a model allows estimating various sets of model parameters for 
obtaining the corresponding Receiver Operating Characteristic (ROC) curve (see sections 2.5 and 
3.2). Furthermore, based on the conceptual framework proposed by Cepeda et al. (2010), the prior 
probabilities can serve as a proxy to landslide susceptibility levels. 

2.3.5 Bayesian inference 

A method of statistical inference is the Bayesian inference, in which observations are fed to a model 
in order to update or produce new inferences regarding some parameters or hypotheses. This 
method has been employed for assessment of global and European thresholds (Guzzetti et al. 2007; 
Guzzetti et al. 2008). 
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2.3.6 Classification trees 

Classification trees are binary classifiers that are constructed by repeated splits of subsets of a 
sample into two descendant subsets, beginning with the whole sample itself. Each split occurs at a 
node, usually defined by a relational expression involving a predictor (rainfall parameter) and a 
constant (a threshold). Each terminal subset is a leaf of the tree. A classic background reference on 
this method is Breiman et al. (1984). Classification trees have been used for estimation of 
thresholds for triggering of landslides (Rességuier 2006).  

2.3.7 Comparison of classification techniques 

Patel (2003) has suggested some guidelines for the comparative assessment of several 
classifications techniques, in the context of data mining. These guidelines are presented in Table 2. 
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Table 2. Comparison of data mining techniques as a guideline for large data sets (Patel 
2003). 

 

Receiver Operating Characteristic (ROC) analysis is a useful technique for comparing the 
performance of classification models. A comprehensive review of ROC analysis is presented by 
Fawcett (2006). An application of ROC analysis to rainfall thresholds is presented in section 2.5. 
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2.4 I-D MODELS 

Intensity-duration (I-D) thresholds are the most common type of empirical thresholds proposed in 
the literature for predicting landslide occurrence induced by rainfall. They are devoted to forecast 
first-time failures of shallow landslides and triggering of rapid mass movements. The fundamental 
assumption is that, in a homogeneous region, landslides occur once a precipitation threshold has 
been overcome. Combinations of intensity and duration for rainfall events which resulted in 
landslides are usually plotted in logarithmic coordinates and the thresholds are obtained by drawing 
lower-bound lines to the points. Most commonly, the thresholds are drawn visually, i.e., without 
any rigorous mathematical, statistical, or physical criterion (Guzzetti et al. 2007). The first I-D 
threshold was estimated by Starkel (1979). 

Threshold equations 

Caine (1980) was the first in attempting to define in a general way the rainfall threshold for 
catastrophic slope failures of the debris flow type at a global scale. The author pointed out that the 
rainfall threshold was neither defined by the total amount of rainfall nor by instantaneous rainfall 
intensity. Instead, a product of these two components was to be used. Analyzing data coming from 
different climatic zones and involving many geological systems at different antecedent moisture 
conditions in the failed material the following threshold relation was proposed between rainfall 
intensity (I, in mm/h) and duration (D, in h):  

0.6114.82I D   
1

Since the work of Caine (1980), different rainfall I-D thresholds have been proposed. Guzzetti et al. 
(2007) summarized the relationships proposed by 52 authors worldwide (Table 3 and Figure 3). The 
general form for the I-D threshold is 

bI c aD   
2

where I is the average intensity and a, b and c being curve parameters. Curves are usually 
represented in logarithmic scales. When c = 0 a straight line is obtained in such a representation. 
This would imply that for long lasting rainfall events even limited intensities could induce 
landslides. Introducing a c coefficient different than zero allows considering an asymptotic 
behaviour for long rainfall durations (Wieczorek 1987; Crosta and Frattini 2001), imposing a 
minimum intensity (c) for high values of D. 
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Figure 3. Collection of rainfall I-D thresholds; numbers refer to # in Table 3; legend: very 

thick line, global threshold; thick line, regional threshold; thin line, local 
threshold (Guzzetti et al. 2007). 
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Table 3 I-D thresholds for the initiation of landslides. Extent: G, global threshold; R, regional threshold; L, local threshold. Area, the area where the threshold was defined. Landslide 
type: A, all types; D, debris flow; S, soil slip; Sh, shallow landslide, L, lahar. Rainfall intensity in mm/h, rainfall duration in hours. Equations in italics were estimated. Source: 1, 
Caine (1980); 2, Moser and Hohensinn (1983); 3, Cancelli and Nova (1985); 4–5, Cannon and Ellen (1985); 6, Wieczorek (1987); 7–15, Jibson (1989); 16, Guadagno (1991); 17, 
Rodolfo and Arguden (1991); 18, Ceriani et al (1992); 19, Larsen and Simon (1993); 20, Arboleda and Martínez (1996); 21, Clarizia et al (1996); 22, Tuñgol and Regalado (1996); 
23, Zimmermann et al. (1997); 24, Paronuzzi et al (1998); 25–30, Bolley and Olliaro (1999); 31, Calcaterra et al. (2000); 32, Montgomery et al. (2000); 33, Wieczorek et al. (2000); 
34, Crosta and Frattini (2001); 35, Marchi et al. (2002); 36, Ahmad (2003); 37, Jakob and Weatherly (2003); 38, Aleotti (2004); 39, Barbero et al. (2004); 40, Floris et al. (2004); 
41, Baum et al. (2005); 42, Cannon and Gartner (2005); 43, Chien-Yuan et al. (2005); 44, Corominas et al (2005); 45–48, Giannecchini (2005); 49, Hong et al. (2005); 50–51, Jan 
and Chen (2005); 52, Zêzere et al. (2005). From Guzzetti et al. (2007). 
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Methodology to establish the thresholds 

For most of the published rainfall thresholds, the applied mathematical or statistical criteria 
are not specified (Guzzetti et al. 2007). Several methodologies have been adopted (Guzzetti et 
al. 2008): 

 The threshold is drawn manually on a plot using linear or logarithmic coordinates as 
the lower boundary for the rainfall conditions that have induced slope failures;  

 The equation describing the threshold is first adopted (e.g., a power law, hyperbolae, 
etc.), and the parameters of the selected equation are adjusted in order to fit the 
empirical data;  

 A function is fitted to the empirical data and then it is shifted to visually match the 
lower boundary of the empirical data; 

Even if the described procedures may produce visually acceptable results, they are not easily 
or clearly reproducible since different results may be obtained working with the same set of 
empirical data (Guzzetti et al. 2008).  To overcome this limitation, Guzzetti et al. (2007) 
proposed an objective methodology to define a threshold model:  a curve of the form 
proposed by Caine (1980) is adopted and a probability approach is used to find the scale 
intercept (a, in Eq. 2) and the slope (b, in Eq. 2) for the power law curve representing the 
minimum threshold, by defining a Bernoulli probability of a data point occurring at a given 
value of rainfall intensity I and rainfall duration D. 

Scales 

I-D thresholds can be classified in global, regional or local, depending on the territorial extent 
to which they apply (Guzzetti et al. 2007). Global thresholds try to establish worldwide 
minimum level below which landslides do not happen. Examples have been proposed by 
Caine (1980), Innes (1983), Jibson (1989), Clarizia et al. (1996), Crosta and Frattini (2001), 
and Cannon and Gartner (2005). Regional thresholds are established for areas extending from 
a few to several thousand square kilometres with similar meteorological, climatic, and 
physiographic characteristics. Among others, examples have been proposed by Ceriani et al. 
(1992), Calcaterra et al. (2000), Corominas et al. (2005). Local thresholds are applicable to 
single landslides or to group of landslides in areas extending from a few to some hundreds of 
square kilometres. Global thresholds may be relevant where local or regional thresholds are 
not available, but may result in false positives, i.e., prediction of landslides that do not occur 
(Guzzetti et al. 2007). Different climatic regions have in fact different thresholds values due 
to adaptation of natural slopes to the climatic conditions which have prevail since the last 
glaciation (Nadim et al. 2009).  

Normalized rainfall I-D thresholds 

Crosta (1998) pointed out that regional and local thresholds perform reasonably well in the 
area where they were developed, but cannot be easily exported to neighbouring areas. 
Morphological, lithological, meteorological and climate variability is in fact not considered in 
the ID thresholds (Jakob and Weatherly 2003). To make comparable thresholds obtained for 
different areas or regions, the rainfall intensity values are normalized using empirical 
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measures of the local climatic conditions (Guzzetti et al. 2007). Two normalizations are 
usually performed (Guzzetti et al. 2008). The first is obtained dividing the event rainfall 
intensity by the mean annual precipitation (MAP) (e.g., Cannon 1988; Ceriani et al. 1992; 
Wieczorek et al. 2000; Aleotti et al. 2002; Bacchini and Zannoni 2003). The second 
normalization is performed by dividing the event rainfall intensity by the rainy-day normal 
(RDN), the ratio between the MAP and the average number of rainy days in a year (Wilson 
and Jayko 1997). 

2.5 ANTECEDENT PRECIPITATION MODEL 

Simple thresholds based on antecedent precipitation can be formulated according to the 
following equations: 

nnA  3

ppnn AA   AND 4

01 21  pn AA  5

Where: An and Ap are the antecedent n-day and p-day precipitation, and n, p, 1 and 2 are 
constants of the model. 

Considering that as long term antecedent precipitation increases, the short term antecedent 
precipitation required for triggering landslides should be reduced, the terms  in Equation 5 
should have the same sign. 

2.6 I-A-D MODEL 

The I-A-D model has been proposed by Cepeda et al. (2009). The starting point for the 
formulation of the new model is the power law function first proposed by Caine (1980) as a 
threshold curve defining a lower bound to global observations of landslide-triggering storms: 

 DI  6

Where: 
I: mean threshold rainfall intensity (commonly expressed in mm/h) 
D: duration (commonly expressed in hours) 
β: slope of threshold curve in log-log space 
α: numerical value of the mean rainfall intensity for D = 1 h. In order to ensure 

dimensional consistency for all values of D, α must have dimensions of [L/T(β+1)] or 
units of mm/h(β+1) for commonly used units of I and D. 

Following a conventional definition of threshold, a rainfall event with a duration D, will be 
likely to trigger landslides if it has a mean intensity I such that  DI  . The exponent β 
typically varies between -2.00 and -0.19 (Guzzetti et al. 2007). This function has been widely 
used by a number of authors for estimating thresholds at all geographic scales: global, 
regional and local. The most recent global update was presented by Guzzetti et al. (2008). 

Based on analyses of numerical experiments by Rahardjo et al. (2007), Dirksen et al. (1992) 
and Terlien (1998) and on empirical observations by Crosta (1998), Cepeda et al. (2010) 
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proposed a conceptual framework that correlates regional or local empirical threshold curves 
with landslide susceptibility levels. This framework proposes that a threshold curve with the 
power law form of Eq. 6 may be associated with a set of parallel curves in the log-log 
Intensity-Duration space, and each member of this set defines a threshold for a particular 
range of landslide susceptibility levels. A brief description of the framework follows. If a set 
of m parallel threshold curves is defined in the log-log Intensity-Duration space (i.e, β is 
constant), such that α1 < α2 < … αi … < αm, then each curve corresponds to a susceptibility 
level (Susc1 > Susc2 > … Susci… > Suscm) and the i-th threshold curve is defined as a lower 
bound to rainfall conditions that are more likely to trigger landslides on slopes having 
susceptibility levels higher than Susci. 

Landslide susceptibility is controlled by slope geometry and the shear strength along the 
potential sliding surfaces. Shear strength in turn is dependent on the constitutive properties of 
the slope materials, their current state and the geometry and distribution of discontinuities. In 
soils, the current state is defined by the stress-strain history and the present void ratio and 
pore pressures. In fractured rock masses, water pressures in the fractures are a controlling 
factor since they reduce shear strength and may induce driving forces that reduce the factor of 
safety. Variations in pore pressures are associated with changes in groundwater conditions 
usually resulting from antecedent rainfall. As a consequence, a well-known connection has 
been established between antecedent rainfall and susceptibility levels. This connection has 
been addressed by many authors using physically-based approaches; see e.g. Edgers and 
Nadim (2004) and Nadim et al. (2009). 

Based on the aforementioned conceptual framework (Cepeda et al. 2010) relating thresholds 
and susceptibility, the latter being controlled by antecedent precipitation, among other factors, 
the coefficient α in Eq. 6 can be formulated as follows: 

    ,, nAgSuscf  7

where, α and Susc are defined as previously, An is the n-day or n-hour antecedent 
precipitation, generally measured in mm, and f and g are functions relating the listed 
variables. The ellipses that precede and follow An represent all the other factors controlling 
landslide susceptibility, which for the present purposes are not explicitly included in the 
formulation. It should be noted that 

0
dSusc

df
; 0



nA

g 8

in agreement with the fact that a rise in antecedent precipitation is expected to increase pore 
pressures and landslide susceptibility, conversely reducing thresholds levels (i.e., reducing α).  

Some empirical thresholds have incorporated antecedent rainfall using a power law form, 
such as the formulation by Tatizana et al. (1987): 

933.0

962603


 hAI 9

or the thresholds for Nicaragua and El Salvador proposed by Heyerdahl et al. (2003): 
32.0

96258


 hC AI 10

where IC is the critical hourly rainfall in mm/h. Note that both formulations use 96-hour 
antecedent precipitation and that the exponent of the antecedent precipitation parameter is 
negative, fulfilling Eq. 8. 
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Considering that the left hand side in Eq. 9 and 10 refers to hourly intensity, both equations 
can be rewritten in the following form: 

  12

1 nAI  11

or, if attempting a generalised form for other values of duration:  
   DAI n

2
1 12

where α1 and α2 are constant parameters of the threshold, and the other values are defined as 
previously. Note that the expression in brackets corresponds to the coefficient α in Eq. 6 and 
to the function g in Eq. 7. Also notice that this formulation is lumping in the coefficient α1 the 
contribution of all other factors controlling landslide susceptibility. Actually, Eq. 12 can be 
seen as a generalised form of Caine’s power law (Eq. 6). 

Since the duration of accumulation n for estimating the antecedent precipitation parameter An 
is not defined in Eq. 12, a procedure for selecting the optimum value of n needs to be 
established. It is desirable that this selection procedure may also be used for obtaining some 
or all the other parameters, namely α1, α2 and β. Traditionally, the selection of optimum 
threshold parameters has been done by visual inspection of available data or by performing a 
least-squares fit to all the observations. It is only recently that more systematic approaches 
have been applied such as those presented by Jakob and Weatherly (2003), Guzzetti et al. 
(2007; 2008) and Jakob (2009). Jakob and Weatherly (2003) and Jakob (2009) have 
performed discriminant function analyses (see e.g., Dillon and Goldstein 1984) using 
landslide-triggering and non-triggering storms. Guzzetti et al. (2007; 2008) have used a 
Bayesian approach (see e.g., Congdon 2006; Woodworth 2005) to estimate thresholds as 
lower bounds to rainfall events that triggered landslides. In this section, the procedure that 
will be used is the Receiver Operating Characteristics (ROC) graph, a technique for selecting 
classifiers based on their performance. 

A ROC curve is a graphical representation of the performance of a binary classifier as a 
discrimination threshold is varied.  The development and earliest usage of this technique 
dates back to World War II when it was used for the analysis of radar signals before being 
employed in signal detection theory. Fawcett (2006) presents a concise and comprehensive 
review of ROC analysis. In landslide hazard assessments, ROC curves have been extensively 
used in recent years for comparative evaluation of models of landslide susceptibility (see e.g., 
Frattini et al. 2004; and 2008; Chang et al. 2007). Since this technique has not yet been 
applied in the context of rainfall thresholds for landslide triggering, a brief description of the 
ROC analysis is presented in the following paragraphs employing rainfall observations to 
illustrate the relevant concepts. Most of the terms, variable names and symbol conventions are 
adopted from Fawcett (2006). 

In order to keep the illustration as simple as possible, the following explanation will use a 
small hypothetical set of Intensity-Duration values from a rain gauge station representative of 
a landslide-prone area and a threshold formulation based on Eq. 6. The Intensity-Duration 
observations are presented in Figure 4a as circle markers. The open circles are non-triggering 
storms or negative observations in the context of the ROC analysis. The red filled circles are 
landslide-triggering storms or positive observations. The total number of negatives and 
positives are represented by the symbols N and P, and are 30 and 10, respectively in the 
present example. In this illustration, the binary classifier is a threshold function having the 
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form of Eq. 6 while β is kept constant. The coefficient α is the discrimination threshold. 
Figure 4a presents a set of 8 classifiers (black lines labeled as Th1, Th2, …) obtained using a 
constant value of β and 8 different values of the discrimination threshold α, such that α1 < α2 < 
… < α7 < α8. Note that in this case, any set of discrimination thresholds using the same binary 
classifier will always produce a set of parallel curves. 

 

(a) 

 

(b) 

Figure 4. Illustration of ROC analysis with rainfall observations. (a) Intensity-
duration plot of non-triggering storms (open circles) and triggering storms 
(filled circles) and 8 different thresholds (black lines). (b) Discrete 
classifiers in the ROC space associated with the thresholds and rainfall 
observations in (a). 

Some basic terms used in ROC analysis are now introduced in the context of rainfall 
thresholds using the curve Th6 in Figure 4a as a classifier. The position of an observation 
relative to Th6 defines a hypothesized class or prediction. A positive observation located at or 
above the threshold is called a true positive and below the threshold is termed a false 
negative. The corresponding terms for negative observations at or above the threshold and 
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below it are false positives and true negatives. The total number of true positives, false 
negatives, false positives and true negatives are represented by the variables TP, FN, FP and 
TN. Their respective values using Th6 in Figure 4a are 6, 4, 1 and 29. These terms can be 
represented in a tabular form using a confusion matrix as shown in Table 4. 

Table 4. Confusion matrix in the context of rainfall thresholds for triggering of 
landslides. Orange cells: landslide-triggering storms. Green cells: non-
triggering storms. Colour filled cells: correct classifications. Hatched cells: 
incorrect classifications. 

 
True class (observations)  

Positives (landslide-
triggering storms) 

Negatives (non-
triggering storms) 

Hypothesized class 
(predictions) 

At or above threshold True Positives TP 
False Positives FP 

(false alarms) 

Below threshold 
False Negatives FN 

(missed events) 
True Negatives TN 

 Σ P N 

Two important metrics can be derived using the above variables: 

P

TP
TPR 

13

N

FP
FPR 

14

Where TPR is the true positive rate and FPR is the false positive rate. In ROC analysis, TPR 
is also termed hit rate, recall or sensitivity. FPR is also termed false alarm rate and is also 
equal to 1 – specificity. TPR and FPR are 0.6 and 0.033 in Figure 4a concerning Th6. These 
values can be represented in the ROC space as a discrete classifier plotting FPR on the 
horizontal axis and TPR on the vertical, see blue marker labelled Th6 in Figure 4b. The other 
classifiers Th1, Th2, … Th8 shown in Figure 4a are also plotted in Figure 4b. 

Some important characteristics of the ROC space are illustrated using Figure 4b: 

1. Most conservative classifiers. A discrete classifier that will unconditionally produce 
predictions at or above the threshold is plotted as (1,1) in the ROC space. This 
corresponds to threshold Th1 in Figure 4a. 

2. Least conservative classifiers. A discrete classifier that will unconditionally generate 
predictions below the threshold is plotted as (0,0) in the ROC space and corresponds 
to curve Th8 in Figure 4a. 

3. Perfect classification. A discrete classifier that does not produce any missed events or 
false alarms, i.e. FP = FN = 0, is plotted as (0,1) in the ROC space and produces a 
perfect classification. From an examination of Figure 4a, it can be seen that this set of 
observations and the present choice of binary classifier cannot produce a perfect 
classification. 
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4. A discrete classifier in the ROC space does not map a unique threshold. A point in the 
ROC space may represent several thresholds that map the same pair (FPR, TPR). See 
for example, thresholds Th3 and Th4 in Figure 4a and Figure 4b. Hence, some 
additional condition needs to be established to distinguish several thresholds mapping 
the same discrete classifier. A possible choice of criterion is using some metrics of the 
distance between the true positives or true negatives and the threshold. If such 
measure is applied to Figure 4a, Th3 can be regarded as more conservative than Th4, 
even though both thresholds map the same discrete classifier. 

5. A set of monotonically changing discrimination thresholds, α, will produce a set of 
discrete classifiers which produces a monotonic curve termed ROC curve. Since 
rainfall thresholds are derived using a finite number of observations, the resulting 
ROC curve will always be a step function. 

6. The area under a ROC curve, AUC, is a measure of the performance of a binary 
classifier. When a binary classifier maps a perfect discrete classifier (see item 3 
above), AUC equals to 1, the maximum value of this measure. When two or more 
binary classifiers are compared based solely on their values of AUC, the best 
performance corresponds to the classifier with the largest AUC. 

Applying the above concepts of ROC analysis to the threshold function in Eq. 12, the value of 
threshold In,k,i for an i-th rainfall observation with duration, intensity and n-duration 
antecedent precipitation, Di, Ii, Ani, is given by: 

kk

i inkikn DAI 
 ,2

,1,,  15

where α1,k, α2,k, βk and n are model parameters of the threshold. The parameters that bear the k 
subscript are varied while n is kept constant. Then, the total number of true positives and false 
positives, TPn and FPn, can be updated for each i-th rainfall observation as follows: 

If ikni II ,, , then 







 

If the i-th event triggered at least one 
landslide, then 

TPn = TPn + 1 
16

If the i-th event did not trigger any 
landslides, then 

FPn = FPn + 1 

It is possible to generalize the formulation in Eq. 16 based on the observation that short-, 
intermediate- as well as long-term antecedent precipitation may play a role in threshold 
values. This has been incorporated in other threshold formulations by relying on combinations 
of n (e.g., 3- and 15-day) rather than using a single value (see e.g., Chleborad et al. 2006 and 
Jakob 2009). Then, a more general form of Eq. 16 is: 

If ikni II ,, and ilpi II ,, then







 

If the i-th event triggered at least one landslide, then TPnp =TPnp +1 
17

If the i-th event did not trigger any landslides, then FPnp =FPnp +1 

Where Ip,l,i is a threshold estimated for the i-th storm using p-hours or p-days antecedent 
precipitation and the l-set of parameters α1,l, α2,l, βl. TPnp and FPnp are the total number of true 
positives and false positives resulting from this threshold definition. Note that in this extended 



Deliverable 1.5 
Statistical and empirical models for prediction of precipitation-induced landslides 
 
 

 
 
Grant Agreement No.: 226479  Page 27 of 159 
SafeLand - FP7 

form, the definition of the i-th storm requires the antecedent p-hours or p-days precipitation 
Api in addition to the previous set of parameters Di, Ii, Ani. 

Considering Eq. 17, a single combination of n and p will produce a ROC curve with an area 
AUCnp. With further consideration of item 6 (see list of characteristics of the ROC space), and 
testing several combinations of n- and p-hours (or –days) for the antecedent precipitation, 
then the optimum combination of the n and p parameters, (np)opt occurs when: 

AUC(np)opt = max (AUCnp) 18

The choice of the k- and l-sets of parameters may be done in two steps: first, a discrete 
classifier is selected on the optimised (np)opt ROC curve; second, a norm is used to select the 
optimum k- and l-sets of parameters among all those parameters that map the same discrete 
classifier previously selected in the first step. The criterion for the first step will be a discrete 
classifier with no missed events (i.e., TPR = 1) and having the lowest amount of false alarms 
(i.e., minimum FPR): 

mFPR(np)opt = min(FPR(np)opt,TPR=1) 19

Where FPR(np)opt,TPR=1 is a vector with all the FPR on the (np)opt ROC curve having TPR = 1. 
Then, the selected discrete classifier from the first step is mapped (mFPR(np)opt, 1) on the ROC 
space. Now, the second step is necessary in order to resolve the non-unique mapping of 
thresholds on the ROC space (recall item 4 in the list of characteristics of the ROC space). 
Calculating a norm r(np)opt,kl,j for the distance between the j-th true positive observation and the 
thresholds In,k,j and Ip,l,j: 

   2,,
2

,,,,)( jjlpjjknjkloptnp IIIIr  20

A norm r(np)opt,kl for all the true positives may be defined as: 





TP

j
jkloptnpkloptnp rr

1

2
,,)(,)(

21

Then, all k- and l-sets of parameters of the optimised thresholds are within a range bounded 
by the most conservative set (kl)opt_cons and the least conservative set (kl)opt_lib, which can 
be obtained by maximizing and minimizing a vector containing the norms calculated with Eq. 
21: 

 kloptnpconsoptkloptnp rr ,)(_)(,)( max 22

 kloptnpliboptkloptnp rr ,)(_)(,)( min 23

Where r(np)opt,(kl)opt_cons and r(np)opt,(kl)opt_lib are the norms for the most and least conservative sets 
of k and l parameters. 

Finally, the optimised threshold equations are: 
lk DAIandDAI l

pl
k

nk
  ,

,1
,

,1
22  24
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Where n, p, and the k- and l-sets of parameters have been obtained by the aforementioned 
optimisation procedure. 

2.7 FLaIR MODEL 

In empirical models it is possible to identify a mobility function Y(t), that is a generic function 
of the antecedent rainfall that can be correlated to rainfall occurrence. 

More precisely if P(Et) is the probability of occurrence of a landslide at time t, and if we 
assume that P(Et) only depends on Y(t), we can express: 

 

   












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where g(.) is a not decreasing generic function, which can assume the values between [0;1] in 
the interval [Y1; Y2], Y1 is the value of Y(t) below which the mobilization is impossible, and Y2 
is the value of Y(t) over which the mobilization is certain. 

By assuming Y1=Y2=Ycr, the threshold scheme occurs which identifies a threshold value Ycr of 
a mobility function Y(t) which separates the conditions "impossible mobilization" and "certain 
mobilization", that is: 

   
   







crt

crt

YtYifEP

YtYifEP

1

0 26

The threshold approach is the most widely approach used in studies of rainfall-induced 
landslides because function identification and parameters calibration in Eq. 25 are very 
difficult owing to the lack of experimental data. 

Sirangelo and Versace (1992) proposed the hydrological model FLaIR (Forecasting of 
Landslides Induced by Rainfall), which considers the mobility function as a convolution 
between the rainfall infiltration rate  .I  and a filter function  . : 

      
t

F dIttY
0


27

where F subscript is for FLaIR. 

The infiltration rate I(u) is assumed proportional to the rainfall intensity P(u), according to the 
following simple relationship: 
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where P0 depends on soil characteristic, and c0 is a factor of proportionality. Because the 
mobility function is defined up to an arbitrary multiplicative factor, it is possible to choose 
c0c=1 so that: 

      
t

F duuPuttY
0

*
29

The function  .  is typical for each case study and plays a central role in mobility function 
evaluation. It can assume different expressions (Iiritano et al. 1998), like rectangular: 

 


 
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elsewhere0

0if1 00 ttt
t 30

exponential: 
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e
k

t

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gamma: 
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power: 

  qmtt      10,0,0  qmTt 33

combination of two exponential functions: 

      ttt 211 1exp       10,0,0 21  t 34

Starting from the historical information, that is landslide dates and antecedent rainfalls, it is 
possible to define the transfer function, the mobility function and its threshold values (Eq. 
26). Two techniques have been proposed to estimate the parameters, called ‘ranking’ and 
‘crossing’ (Sirangelo and Versace 1996); and Versace et al. 2000). 

Using the ‘ranking’ technique, parameters θ can be estimated by evaluating the mobility 
function YF(t,θ) on the range of variability of the parameters and adopting the values that 
allow YF(t,θ) to assume its k highest values in correspondence with the k known historical 
movements of the landslide.  

For each admissible parameter, it is possible to detect a variation interval for the mobility 
function between a lower limit function value fL(.) and an upper limit function value fU(.). 
These represent, respectively, the highest value which did not produce any movement and the 
lowest value for which movement occurred. 
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The second technique, called ‘crossing’, has been proposed to reduce the difference between 
the upper and lower limit functions in the case of landslide with only one movement. The 
upper limit function value fU(.) is the lower value of YF(t,θ) that is associated to a historical 
mobility, while lower limit function value fL(.) is the upper value that YF(t,θ) assumes in the 
immediate proximity of landslide event. Moreover the parameters will be considered 
admissible if they satisfy the ‘ranking’ condition and produce mobility functions locally no 
decreasing before historical landslides. 

The FLaIR model can be assumed as a general framework for the large part of empirical 
relationship between landslide and antecedent rainfall (Capparelli et al. 2009; Capparelli and 
Versace 2010).   

Moreover FLaIR exhibits many advantages if compared with other empirical approaches. 
Firstly, it is able to consider the real pattern of rainfall input, as it gives different values of 
mobility function for rainfall with the same average intensity but with different hyetographs. 
In such cases other models, like I-D, give, instead, the same value of mobility function. 

Comparison between current rainfall values and critical ones also is easier by considering 
FLaIR because comparison is just between two values (YF(t) and YF,cr) and not between two 
curves.  

Besides, depending on the shape of filter function ψ(.), in FLaIR model, the weight of a short 
and intense rainfall pulse changes with time, while it remains the same if a cumulative rainfall 
is considered, like other empirical models do. So in FLaIR model effect of such a pulse is not 
anymore “persistent”. 

Finally, due to different shapes of the filter function ψ(.), the FLaIR model is much more 
flexible than other models and can represent different types of slope responses with respect to 
rainfall inputs: from very fast responses to slower ones. 
 
By using FLaIR model, different applications can be carried out. It can be used for individual 
(punctual) cases analyzing historical cases of mobilisation. 

The many applications running on several selected case studies in Italy showed that the 
transfer function shapes appear strictly linked to the landslide dimensions (Sirangelo et al. 
2003). The triggering mechanisms for the shallow landslides are usually caused by very 
intense rainfall accumulated over short time intervals; deep movements depend on rainfall 
accumulated over long time intervals.  

It is possible to join the model with a rainfall forecasting model, as meteorological or 
stochastic generators which provide a probabilistic prediction of future rainfalls. The latter 
represent the new input for the FLaIR model which is so able to evaluate the probability that a 
mobility function exceeds, in a future time t, a fixed critical value YF(t), providing useful 
information about the evolving conditions in advance. Capparelli and Tiranti (2010) describe 
an example concerning landslide thresholds in the Western Alps sector of the Piemonte region 
(Northern Italy) where debris flows are the predominant type of landslide. By linking the 
mobility function to meteorological forecasts, the model was used for developing an early 
warning system for real time forecasting of slope hazard. Versace et al. (2003) and Giorgi et 
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al. (2009) describe integration of FLaIR with two different stochastic modules: PRAISE 
model (Prediction of Rainfall Amount Inside Storm Events) proposed by Sirangelo et al. 
(2007) and a DRIP model (Disaggregated Rectangular Intensity Pulse) proposed by Heneker 
et al. (2001). The outputs are represented by a probability, estimated at time  , that the 
forecasted value of mobility function, at time t , will exceed the critical value. 

If suitable adequate geotechnical monitoring instrumentation (inclinometers, piezometers, 
extensometers, etc) are available in the landslide area, other applications of the FLaIR model 
are possible. The mobility function, in fact, can be correlated to field data concerning 
movement of landslide bodies, or change in pore pressure (Capparelli et al. 2009).  

The most important references for the FLaIR model are: Sirangelo and Versace (1992), 
Capparelli et al. (2009) and Versace and Capparelli (2008). 

2.8 NEURAL NETWORKS 

Neural networks for the prediction of the behaviour of slow-moving landslides 

Artificial neural networks (ANN) belong to the category of statistical methods. The method is 
characterized by its capacity for automatic learning, i.e. the ability to learn from their 
environment and to improve their performance. The first applications in the domain of soils or 
structures date back to the 90s (e.g., Goh 1994; Lee and Lee 1996; Aleotti and Chowdhury 
1999). A detailed description of their use for the prediction of slow displacement movements 
of slopes can be found in Mayoraz and Vulliet (2002); the principal concepts presented by the 
authors are recalled in the following. 

Theoretical bases  

An artificial neural network (ANN) is a computational tool composed of a large number of 
very simple processors: the artificial neurons. Each neuron can perform elementary 
calculations, as weighted sum, on input parameters and provide an output parameter. The 
network set-up allows exchanging information through a network of dense connections 
(Figure 5).  

 
Figure 5 Artificial neural network. 

The perceptron is the type of neural network most commonly used for tasks of classification 
and function approximation (Lippmann 1987). The simplest perceptron is composed of a 

Neuron

Connection
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single artificial neuron of the McCulloch and Pitts type (McCulloch and Pitts 1943) (Figure 
6), having N input signals and one output. 

 
Figure 6 Basic artificial neuron j of the McCulloch and Pitts type (from Mayoraz 

and Vulliet 2002). 

The output sj of this kind of neuron has the form:  

s f f w xj j j ij j j
i

N

   

( ) ( )  

1

 35

where w1j, w2j, ...,wnj are the transmission (or synaptic) weights, which are the real 
coefficients affected to the input signals x1, x2, …, xn, j is the internal state of the neuron, f 
is a function affected by a threshold j. Various forms can be adopted for the threshold 
function f (Figure 7). These are continuously increasing limited function such as simple step 
functions, sigmoidal forms or linear piecewise functions. The maximum and the minimum of 
the function correspond to the upper and lower states of the automate (generally the output 
varies between 0 and 1, or between –1 and 1).  

 

Figure 7 Different threshold function forms : step, linear and sigmoid (from 
Mayoraz and Vulliet 2002). 

Equation 35 shows that such a neuron performs a linear discrimination in the vector space of 
its inputs. The internal weight wij of the neuron and the threshold j determine the equation of 
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the separating hyperplane. When the problem is not linearly separable, a multilayer 
perceptron can be created combining the basic units by cascading in order to form networks 
of several neurons, organised in layers (Figure 8). A transfer function T is constructed 
automatically for the neural network. If the output only has one component, this function is of 
the following form:  

T X T x x x v f w xk k k N k i
i

M

ij
j

N

j k i( ) ( , ,..., ) ( )( ) ( ) ( ) ( )   
 
 1 2

1 1

    36

where xj(k) are the components of the kth input vector, N and M are the number of inputs and 
the number of neurons in the intermediate layer, respectively; wij are the synaptic weights 
between the inputs and the neurons in the intermediate layer, vi the synaptic weights between 
the neurons in the hidden layer and the output neuron; j are the thresholds of the neurons in 
the hidden layer, µ is the threshold of the output neurons and f is the sigmoid function given 
by: 

f () 
1

1 e
  37

 

Figure 8 Multilayer perceptron with N components inputs, 1 intermediate layer of 
M neurons and 1 output layer of R neuron (from Mayoraz and Vulliet 
2002). 
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The learning process 

ANN can learn from their environment and to improve their performance. The use of such a 
system generally includes two distinct phases: a configuration phase, also called the training 
phase, and an application phase called the test phase during which the outputs, unknown to 
the network until that moment, are presented to it. Supervised learning is an iterative process 
during which the weights of the connections are progressively adjusted. During this phase, 
some examples of input vectors are presented to the system, which, through the use of a 
learning algorithm, minimise a predefined criterion, generally the average global quadratic 
error E at the output of the network, defined by:  
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o(Xk) is the desired output of the network and T(Xk), the output calculated by the transfer 
function. ti is the output of the ith neuron of the ouput layer and P is the number of input 
vectors. Learning in a multilayer perceptron may be seen as a process of regression of the 
non-polynomial function T. 

A generalisation of the learning algorithm for simple perceptrons (one layer) is used for 
multilayer perceptrons. This is based on the principle referred to as backpropagation (LeCun 
1985). Let  PXXX ,,, 21   be a set of P points in an N dimensional space and the set 

   o X k Pk( ) , , ,..., 1 2  its corresponding outputs. The partial derivatives of error with respect 

to the weight of the last layer are calculated directly. The technique of back-propagation is a 
process which permits the back calculation of the partial derivatives of error ej due to the 
neuron j with respect to the weight of the neurons connected to j of the preceding layers and 
permits the progressive adjustment of these weights according to the general relation:  

ij

kjT
k

ijkjijkjijkj

P

k
ijkjij

T
k

ij
ij

w

e
J

wowswe

wewJ
Pw

E

P
w








)(
)(

)()()(

1
)()(

)()()(

where

)()(





 


  39

 is the learning parameter, sj is the transfer function of the neuron j (Eq. 35), and J is the 
Jacobian error matrix with respect to the weights. The index (k) indicates that these values 
concern the kth input vector. In the case where the threshold function is that of Eq. 37, it may 
be noticed that its derivation respects the following property:  

f


 f ()(1  f ())   40

When the number of layers and the number of examples are large, this method, which is a 
gradient descent method, can reach a local minimum in weight space that is rather far away 
from the desired absolute minimum. It is then necessary to restart the training from other 
initial weights, randomly chosen. The use of complex perceptrons is therefore limited by 
calculation difficulties. Thus, pre-processing of data is often necessary in real applications to 
extract the pertinent attributes rather than presenting the raw data to the neural network. 
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Prediction of slope behaviour 

The presented method has been used to predict the behaviour of slow-moving landslides 
(Mayoraz and Vulliet 2002). Possible applications are: (i) prediction of the pore water 
pressure as a function of the rainfall; (ii) prediction of the velocity as a function of the 
variation in pore water pressure; (iii) prediction of displacement rates from rainfall data.  

2.9 EMPRICAL DYNAMIC MODELS FOR THE PREDICTION OF 
LANDSLIDES 

This section describes the use of empirical dynamic models for the analysis of the behavior of 
slow-moving landslides. General information on building dynamic models is available in 
specific books; in the following, the main concepts presented by Ljung (2002) are briefly 
recalled and adapted to the case of landslide analysis.  

Dynamic models aim to describe relationship between measured quantities. Input and output 
are distinguished. The output is partly determined by the inputs. With reference to the 
behavior of slow-moving landslides the movement rate is usually the model output; in this 
sense a monovariate time series is obtained, that is a time series with a single output variable. 
A single-output system with input u and output y is called linear if it is possible to describe it 
by a model that takes the form:  

         1 1y t G q u t H q e t   41

where G and H are transfer functions in the time delay operator, q-1; e(t) is a white noise 
signal that is independent of past inputs; u(t) is an exogenous signal. For the present work, 
rainfall evolution is assumed as the input signal. Input can generally include several other 
measurements evolving with time such as pore water pressure, temperature, relative humidity. 
All quantities that are not explicitly considered in the model and that affect the landslide 
behavior (i.e. the model output) are indicated as disturbance. 

The delay operator works on a signal in the following way: 

   dq x t x t d   42

where d is a multiple of the sampling period of the data. 

All the common models used can be summarized by the general equation: 
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 1 1
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lD q d q d q    

 1 1
11 r

rF q f q f q    

According to the different values of the polynomials in Eq. 43, the following models are 
defined: Finite Impulse Response (FIR) model (A=F=C=D=1); Box-Jenkis (BJ) model 
(A=1); AutoRegressive Moving Average with eXogenous inputs (ARMAX) model (F=D=1); 
Output-Error (OE) model (A=C=D=1) and AutoRegressive with eXogenous inputs (ARX) 
model (F=C=D=1). 

The predictor associated with Eq. 43 can be expressed in “pseudo-linear” regression form as 
(Ljung and Söderström 1983): 

   ˆ ,Ty t t    44

where   is the parameter vector and   is the regression vector. 
For example, in the ARX model the regression and parameter vectors are defined 
respectively by: 

         1 ,
T

a k k bt y t y t n u t n u t n n          45

1 0, , ,
a b

T

n na a b b       46

In an explicit form, the predicted value  ŷ t of the output variable y can also be written as: 

         1 0ˆ 1
a bn a k n k by t a y t a y t n b u t n b u t n n            47

or 

         1 0ˆ 1
a bn a k n k by t a y t a y t n b u t n b u t n n            48

Which is the same as Eq. 47, within the signs of the a coefficients. The coefficients na and nb 

in these expressions are also called embedding parameters, the coefficient nk is the delay 
parameter. 

The equation used for an ARMAX model would instead be: 

             1 0 1ˆ 1 1
a b cn a k n k b n cy t a y t a y t n b u t n b u t n n c e t c e t n                   49

In the case of multiple input time series, a value of nb and nk has to be set for each of input 
channels. Generally speaking, they can be different for each input channel, even though the 
most common case is to have the same parameters for each of the input channels, especially if 
they all represent the same kind of variable. 

A second approach can be attempted based on the nonlinear versions of the time series 
forecasting models mentioned above. 

Nonlinear counterparts to the linear time series forecasting model structures are obtained by 
equations of the type: 
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     , ,y t g t e t      50

or on predictor form: 

   ˆ , ,y t g t       51

where  ,t   is again the regression vector, while   is the vector containing the adjustable 

parameters in the neural network known as weights. g is the function realized by the neural 
network and it is assumed to have a feed-forward structure. Depending on the choice of the 
regression vector, different nonlinear model structures can be obtained. If the regression 
vector is selected as for ARX models, the model structure is called NNARX (the acronym of 
Neural Network ARX). Likewise, NNFIR, NNARMAX, NNOE structures also exist. 

The structures of NNARX and NNARMAX models are depicted in Figure 9. 
 

 
Figure 9. The NNARX (left hand side) and NNARMAX (right hand side) model 

structures. 

2.10 CONSIDERATION OF UNCERTAINTY IN DATE AND TIME OF 
OCCURRENCE OF LANDSLIDE EVENTS FOR ESTIMATION OF 
THRESHOLDS. 

Landslide inventories suffer frequently of lack of information or uncertainty in the location 
and timing (date and time) of events. For example, the Norwegian database of landslide 
includes more than one thousand events with an uncertainty in time of occurrence ranging 
between a few hours to 64 days. The traditional approach to address this uncertainty has been 
to discard all events above a specified uncertainty, and use the remaining events without 
accounting for their time uncertainty. In the present report, the following procedure is 
proposed for incorporating uncertainty in time (or date) of occurrence in the estimation of 
thresholds: 
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a. For each landslide event in the inventory, produce a symmetrical probability density 
function (PDF) distributed in time and bracketed by the value of uncertainty given in 
the inventory. The PDF can be uniform, triangular, or other form, but its area must be 
equal to 1. 

b. Assuming that the landslide events are not mutually exclusive, apply the addition rule 
for estimating the union of the PDFs of all events. 

c. Classify the resulting distribution according to the level of total time-uncertainty (e.g., 
low, medium, and high). 

d. Estimate thresholds for the different levels of time-uncertainty. 

The above procedure allows to incorporate all events in an inventory, regardless of their 
uncertainty in the time (or date) of occurrence. The procedure has significance when it is 
assumed that the time uncertainty is inversely proportional to the magnitude of the landslide. 
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3 EVALUATION CRITERIA 

In order to test model performance, a set of evaluation criteria have been defined against 
which the models can be tuned.  

3.1 PENALTY WEIGHTS FOR FALSELY PREDICTED ALARM STAGES 

False predictions of an alarm stage by the model will result in a penalty. The size of the 
penalty increases with increasing potential severity of the false alarm. For example, a 
predicted alarm stage Yellow while the real stage was Orange is potentially more severe to a 
community than a predicted alarm stage Orange while the real stage was Yellow. An example 
of penalty weights given to falsely predicted alarm stages is given in Table 5. 

Table 5. Example of weigths due to differences between observed and predicted 
alarm stage.  

  Observed    
  Green Yellow Orange Red 
Predicted Green 0 2 4 6 
 Yellow 1 0 2 4 
 Orange 2 1 0 2 
 Red 3 2 1 0 

Since not all datasets in the database available for testing have these alarm stages, penalty 
weights differ between the datasets. 

3.2 PERFORMANCE OF CLASSIFICATION 

The relative performance of the classification of several threshold models can be evaluated 
using one or more of the following criteria: 

a. Confusion matrix. See Table 4. 
b. ROC curve. The ROC curve is obtained by evaluating the threshold model with 

several sets of parameters. See section 2.5. 
c. Area under the ROC curve (AUC). The maximum AUC is 1 for a model with a perfect 

classification. When comparing several models, the ones with highest AUC have the 
best performance. 

d. Minimum distance from the ROC curve to the point of perfect classification. When 
comparing the ROC curves for several models, the minimum distance to the point of 
perfect classification (FPR = 0, TPR = 1) provides an indication of the model 
performance. The lowest distances correspond to models with best performance. 

e. Misclassification error rate. This parameter is obtained as the ratio between the 
misclassified observations (missed events plus false alarms) divided by the total 
number of observations. 
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3.3 FLaIR MODEL 

The FLaIR model can be evaluated by using ROC Analysis (Receiver Operating 
Characteristics, see e.g., Fawcett 2006; Frattini et al. 2004; and 2008; Chang et al. 2007), for 
detecting the success/failure to predict landslide and non-landslide events. 

If the model outputs and the time series of the observed landslides are known, there are four 
possible outcomes:  

a. If a landslide occurs and it is predicted by the model, a true positive TP, also named 
correct alarm CA, is counted;  

b. If a landslide occurs and it is not predicted by the model, a false negative FN, also 
named missed alarm MA, is counted;  

c. If a landslide does not occur, but it is predicted by the model, a false positive FP, also 
named false alarm FA, is counted;  

d. If a landslide does not occur, and it is not predicted by the model, a true negative TN is 
counted. 

Starting from these definitions, a two-by-two contingency matrix can be constructed (Table 
6), representing the counting of the outcomes. In details, the numbers along the major 
diagonal represent the correct decisions, while the other diagonal provides the errors between 
the various classes.  

Table 6. Contigency matrix in the context of landslides prediction. 

 True class (Observation) 
Landslide occurrence No landslide occurrence  

Predicted class  
(Prediction) 

Predicted  
landslide 

Correct Alarms CA False Alarms FA 

No predicted 
landslide 

Missed Alarms MA True Negatives TN 

This matrix forms the basis for many common metrics, useful for model performance 
evaluation; it is possible to define: 

1. The Hit Rate HR, estimated as: 

MACA

CA

AlarmsMissedAlarmsCorrect

AlarmsCorrect
HR





 52

2. The False Alarm Rate FAR, estimated as: 

FATN

FA

AlarmsFalseNegativesTrue

AlarmsFalse
FAR





 53

The range of both metrics is [0 ; 1] and the graphical representation is the two-dimensional 
ROC graphs (Figure 10), in which HR is plotted on the Y axis and FAR is plotted on X axis. 

Analyzing the figure, it is possible to classify a model as: 
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a. Most Conservative if predictions are unconditionally produced at or above the 
threshold. It is plotted as (1,1) in the ROC graphs and it corresponds to a FLaIR model 
for which a threshold equal to 0 is assumed. 

b. Least Conservative if predictions are unconditionally produced below the threshold. It 
is plotted as (0,0) in the ROC graphs and it corresponds to a FLaIR model for which a 
infinitive threshold value is assumed. 

c. Perfect Classifier if it produces neither missed alarms nor false alarms and it is plotted 
as (0,1) in the ROC graphs. 

For a fixed parameter vector   of the selected transfer function ψ(.) of the FLaIR model, it is 
possible to produce points in the ROC graphs, associated with different threshold values, 
which describe a monotonic curve termed ROC curve. The area under a ROC curve, named 
AUC (Fawcett 2006), is a measure of the performance. When a model is a Perfect Classifier, 
AUC equals 1. 

 
Figure 10. ROC space. 

Then, the optimum parameters vector   of the FLaIR model corresponds to the maximum 
AUC value. The proposed ‘ranking’ and ‘crossing’ techniques (see section 2.7), tend to 
provide ROC curve with AUC=1. In fact, if the mobility function YF(t,θ) assumes its k highest 
values in correspondence with the k known historical landslide movements, and the upper 
limit fU(.) is considered as threshold value YF,cr, FA and MA are equal to 0 and, then, HR = 1 
and FAR = 0. 
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If two or more vectors   produce the same maximum value of AUC, the optimum will be 
characterized by the lower amount of false alarms (i.e., minimum FAR) in correspondence to 
the threshold for which there are no missed alarms (i.e., HR=1). If the same minimum FAR 
value is obtained, a second step is necessary, which consists in the evaluation of: 

LU ffr  54

between the upper limit value fU(.) and the lower limit value fL(.) for different values of   (see 

section 2.7). The value of   which determines the maximum value of r is then selected as 
model parameter. This estimation allows the largest possible gap between the mobility 
function YF(.) values related to no movement and those related to movement. 

If a large number k of observed landslides for a study area is available, it is possible to divide 
the sample interval in two parts: k1 and k2. Model calibration is carried out by using the subset 
k1, and the performance in ROC space is analyzed by considering the other interval. 

3.4 EMPRICAL DYNAMIC MODELS FOR THE PREDICTION OF 
LANDSLIDES 

A standard way to assess the model performances is to split the data set into a training set 
(which is used to determine the parameters of the model, that is the weights of the 
connections between neurons in the case of the NN models, and the parameter vector   in the 
case of the linear model) and a validation set (which is used to compare the result of the 
prediction obtained with the model and the observed values recorded in the time series). Both 
the training and the validation sets consist of a series of patterns of input-output couples. 

In the analyzed case study, each input-output couple is made up of the value of the cumulated 
horizontal displacement recorded at the day x, as the output, and the set of the rainfall values 
recorded in the 28 days before the day x, as the input. In order to evaluate the predictive 
performance of the model, it is important to use a set of sample patterns that were not used in 
the phase of training (or calibration) of the model.  

If the model performs well with the same data used for its training, but has a poor predictive 
performance with the data belonging to the validation set, it is said to have a poor 
generalization performance. 
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4 DATASETS USED  

This chapter gives a brief description of the data used to evaluate the models described in 
chapter 2.  

4.1 LA FRASSE (SWITZERLAND) 

The La Frasse landslide is located in Switzerland, some 20 km East of Lake Geneva (Figure 
11). The landslide can be described as a major natural instability, both in terms of spatial 
extension and of the economical risks it generates. It intercepts over 1km the RC705, a 
cantonal road of strategic importance for the development of tourism. In fact, the road ensures 
the access to several ski resorts. This road is regularly damaged due to the recurrent crises of 
the lower part of the landslide such as in 1966, 1981 and 1994 where movements of up to 7m, 
4m and 2m respectively were recorded. The motion of the La Frasse landslide furthermore 
induces the risk of the damming of the downhill Grande Eau River with significant potential 
damages for up to the 8’100 inhabitants of the city of Aigle. 

Several studies have been carried out on the landslide, with the main purpose to analyse its 
behaviour and to propose mitigation measures (Lugeon et al. 1922; DUTI (Détection and 
Utilisation des Terrains Instables) 1986; Noverraz and Bonnard 1990; Vulliet and Hutter 
1988; EPFL-NCG and Association technique Norbert De Cérenville Géotechnique + EPFL 
pour l'étude du glissement de La Frasse 2004; Laloui et al. 2004; Tacher et al. 2005; Planchat 
et al. 2009). The main features of the landslide are hereafter summarized. 
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Figure 11.The La Frasse landslide: location within Switzerland and general view 
(Tacher et al. 2005). 

 

 

Main features 

Table 7 shows the general features of the case study. The landslide extends over a length of 2 
km and covers an area larger than 2 km2. It slides along a NW to SE axis, i.e., the line of the 
steepest slope, down to the Grande Eau River which continuously erodes its toe. Given the 
estimated thickness of the landslide of 80 m in its upper section and of 40 m near the toe, the 
total volume of the sliding mass reaches 73 million m3. From the topographical survey 
(Figure 12), it is possible to distinguish an upper and a lower landslide. In its upper region, the 
La Frasse landslide experiences velocities of 5 to 10 cm/year. There, the instability is 80 m 
thick and follows a slope of 11°. Starting at 1000 m a.s.l. and going down to the foot of the 
landslide, the lower landslide experience velocities of 20 to 60 cm/year. The higher velocities 
can be explained by the absence of obstacles towards the Grande Eau River, the reduced 
thickness of the slide (only 40 m) and the steeper slope of 20°. The presence of a secondary 
scarp zone makes this morphological change obvious. The lowest quarter of the landslide is 
further divided into Zone+ and Zone++ based on their activity. Zone++ was the most active 
part of the landslide until the construction of a pumping platform in 1994. 
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Table 7  General features of the la Frasse landslide. 

Name La Frasse landslide (Switzerland, Canton of Vaud) 

Average coordinates 569 600/133 500

Active slide area ~ 1 km2

Max / Min altitude 1500 / 800 m a.s.l.

Total length >2000 m

Width 500 / 800 m

Average depth  80 m (upper part) 40 m (lower part)

Volume ~ 42 million m3 (active slide) / ~ 73 million m3 (total slide) 

Mean inclination 11° (upper part) 20° (lower part)

Velocity 10–15 cm/year (upper part) / 20-60 cm/year (lower part) 

Geological context Triassic dolomites, Malm limestones, Eocene siltstones, 
flysch

Vegetation Pastureland, wooded zones and swamps

Possible damage Roads (RC 705 and RC 709), around 20 chalets, Aigle (VD)
 

 
Figure 12. Kinematic analysis of the slope and division of the instability phenomenon 

(EPFL-NCG and Association technique Norbert De Cérenville Géotechnique 
+ EPFL pour l'étude du glissement de La Frasse 2004) 
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Hydrogeology 

At the landslide scale, due to the heterogeneity of the sliding material, the whole sliding 
mass can be considered as an aquifer. Local excess groundwater pressures (artesian levels) 
have been recorded not only at the main slip surface but also within the sliding mass. At 
the slip surface level, the hydraulic head fluctuations can reach up to tens of meters and 
occur over only a few hours. The variations are maximal in the vicinity of the limestone 
abutment due to the reduced flow section. They are less significant uphill due to gravitational 
drainage, and at the toe due to the consistent level of the Grande Eau River (Noverraz and 
Bonnard 1990). 

The hydrological budget amounts to 7000 m3 of water per day. There is no clear relationship 
between the acceleration phases and either gross rainfall or net infiltration even when 
sophisticated infiltration formulas are used (COUP model, Jansson and Karlberg 2001). A 
better correlation is found if past events up to two years before the day of calculations are 
considered and if the daily rainfall values below a certain threshold value are neglected. Even 
then, the contribution of direct surface infiltration does not exceed one third of the 
hydrological input (except after a prolonged rainfall event or during snowmelt). The rest is 
provided by the lateral fluxes from the regional geological context enclosing the La Frasse 
landslide which acts as a draining basin of nearly 3 km2. Surprisingly, the bedrock seems not 
to be draining (nor feeding) the instability although it experiences lower groundwater levels 
than in the landslide. A dye tracing test has furthermore proved that the karstic network 
bypasses the site (Parriaux et al. 1987). 

Triggering Mechanisms 

The La Frasse landslide crises can be related to two types of triggering mechanisms. The first 
mechanism is classically related to the external hydrological factors. According to this theory, 
a crisis is prepared by a long period (probably a minimum of several months) of significant 
rainfall over the whole draining basin. While the hydraulic head progressively increases 
below the slip surface, the slope movement is finally triggered by the increase of the 
percolation forces within the sliding mass and the reduction of the shear strength at the slip 
surface. The lower part of the landslide reaches a new equilibrium soon after the rainfall event 
ceases, while the upper part starts to move (or not) after a time lag that is not yet known. 

The necessity of an “internal” mechanism appeared after multiple accelerations were recorded 
in periods of low precipitation (for instance the 1966 crisis) and in order to explain the 
landslide behavior between crises. The theory of this internal mechanism predicts that the 
successive rise and drawdown of the groundwater level, creep deformation or the percolation 
forces could cause significant morphological changes, and in particular could foster steeper 
slopes. In practice, the occurrence of these two triggering scenarios is not exclusive while 
other factors such as the toe erosion by the Grande Eau River could also occasionally play a 
role. 

Dataset 

The landslide has been monitored by means of photogrammetry, the comparison between 
successive cadastral plans, topographical triangulations, GPS measurements, building crack 
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measurements, inclinometer readings, an extensive record of the landslide surface and in 
depth movements. A continuous displacement measurement device, ROBOVEC has 
moreover been installed in 2006. Located on the left bank of the Grande Eau River, it enables 
a real time monitoring of the movements in the RC 705 vicinity. Most of the inclinometers 
highlight a well defined and unique failure plane with little or no place for any viscous 
deformation. Secondary failure planes have also been observed in Zone+ but their influence is 
supposedly less significant. These shallow slides were furthermore partially stabilized by the 
boring of a series of 10 m long anchored piles along the RC 705 in 1987. 

For the purpose of the present study, it was chosen to consider the data collected during the 
years 1982-1995. Starting from 1995, different mitigation strategies were implemented on-site 
which have since altered the landslide behaviour in a significant way. Figure 13 depicts the 
cumulated displacement in the point A (Cf. Figure 11), which is located in the most active 
part of the landslide, along with the daily rainfall for the years 1982-1996.  

 
Figure 13. The La Frasse landslide: daily rainfall and cumulated displacement at 

point A (see Figure 11) for the years 1982 – 1995. 

  

0

10

20

30

40

50

60

19
82

19
82

19
83

19
83

19
84

19
84

19
85

19
85

19
86

19
86

19
87

19
87

19
88

19
88

19
89

19
89

19
90

19
90

19
91

19
91

19
92

19
92

19
93

19
93

19
94

19
94

19
95

C
u

m
u

la
te

d
 d

is
p

la
ce

m
en

t 
[c

m
]

0

20

40

60

80

100

120

140

160

180

D
ai

ly
 p

re
ci

p
it

at
io

n
 [

m
m

/d
ay

]



Deliverable 1.5 
Statistical and empirical models for prediction of precipitation-induced landslides 
 
 

 
 
Grant Agreement No.: 226479  Page 48 of 159 
SafeLand - FP7 

4.2 BARCELONNETTE (FRANCE) 

General aspects 

Rainfall is worldwide a recognised trigger of landslides. Hydrological triggering of mass 
movements can be divided in three general types: i) development of local perched water 
tables in the subsoil leading to shallow slope instabilities and possible gravitational flows, ii) 
long-lasting rise in permanent water tables leading to deep-seated slope instabilities, and iii) 
intense runoff causing channel-bed erosion and debris flows. Types i) and iii) are usually 
observed during heavy storms characterized by high rainfall intensities (hourly and daily 
rainfall); type ii) is usually observed through increasing water content in the subsoil due to 
previous rainfalls (weekly or monthly rainfall). 

Many investigations have been carried out to determine the amount of precipitation needed to 
trigger slopes failures and associated mass movements. An important state-of-the-art on 
rainfall thresholds can be found in Guzzetti et al. (2007; 2008). 

White et al. (1992) define a threshold as the minimum or maximum level of some quantity 
needed for a process to take place (trigger) or a state of change (landslide reactivation). For 
rainfall-induced landslides a threshold may be defined as the rainfall, soil moisture or 
hydrological conditions that, when reached or exceeded, are likely to trigger landslides 
(Guzzetti et al. 2007). Rainfall thresholds can be defined on physical (process-based, 
conceptual) or empirical (historical, statistical) bases (Corominas 2000; Crosta and Frattini 
2001; Aleotti 2004; Wieczorek and Glade 2005; Guzzetti et al. 2008; and references therein). 

The Barcelonnette Basin, South French Alps: physiographic and climatic 
characteristics. 

The Barcelonnette Basin is located in the dry intra-Alpine zone (Figure 14) and extends from 
1100 to 3000 m a.s.l. It is characterised by (1) a mountain climate with a marked interannual 
rainfall variability (725 ± 400 mm over the period 1928 -2009) and 130 days of freezing per 
year, (2) a continental influence with significant daily thermal amplitudes (> 20°) and 
numerous freeze-thaw cycles and (3) a Mediterranean influence with summer rainstorms 
yielding occasionally more than 50 mm/h. Heavy spring rains on melting thick snow layers 
also lead to high discharges. Meso-climatic differences on a small scale emerge due to the 
East-West orientation of the valley (Remaître 2006). The valley is drained by the Ubaye River 
which is fed by several torrents on the north- and south-facing slopes. It constitutes a 
geological window, baring the autochthonous Callovo-Oxfordian black marls, also called 
’Terres Noires’, under the allochthonous Autapie and Parpaillon flysch (Maquaire et al. 
2003). Local slopes are characterised by specific morphology due to the geological setting. 

Data: mass movement catalogues, meteorological data and methodology. 

Collection of historical data in catalogues, newspapers, monographs, technical reports, 
bulletins and scientific papers for the period between 1850 and 2009 has been carried out. 
Detailed descriptions on the type and quality of information collected and the methodologies 
used to analyze the data can be found in Flageollet et al. (1999) and Remaître (2006). 
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Figure 14. Mean annual precipitation (M A P) map of the South French Alps and 
location of meteorological stations in the surrounding of the Barcelonette 
basin. The two stations in red are those used in this study. 

Over the period 1451-2010, about 600 references with exact date and location of triggering 
have been recorded. For each soil slide and debris flow event, the information collected and 
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stored in the Barcelonnette catalogue includes: (1) the precise or approximate location of the 
area affected by the soil slide or debris flow, (2) the precise time, date or period of failures, 
(3) the rainfall condition that resulted in slope failures, including the daily rainfall, the 
antecedent rainfall for various periods and for the Barcelonnette station from 1998: the total 
event rainfall, the rainfall duration, the mean rainfall intensity and peak rainfall intensities, (4) 
the landslide type, (5) a generic description of the rock types and associated soils. 

There are 8 meteorological stations located inside or in the surroundings of the Barcelonnette 
basin (Table 8). In this work, only two of these stations were used (Figure 14), because (1) 
both stations exhibit a similar annual precipitation pattern (Figure 15), (2) their locations are 
close to the main debris flows and soil slides observed within the basin, and (3) they cover 50 
years of data (1960-2009). 

Table 8. Characteristics of the climatic stations in the Barcelonnette area. 

* Hourly data are available from 1998 

 

Figure 15. Annual precipitation for the Barcelonnette and Jausiers rain gauges. 

Data are mainly available for 24 h-periods; data for 1 h-periods are only available for the 
Barcelonnette meteorological station (1998-2010). 

Meteorological 
station 

X coordinate Y coordinate Elevation (m) Date of 
creation 

Type of data 

(1) Barcelonnette 44°23'30"N 6°40'18"E 1155 1925 Rainfall & temperature (Hourly)*

(2) Jausiers 44°24'48"N 6°43'24"E 1240 1961 Rainfall & temperature (Daily) 

(3) Les Clots 44°24'52"N 6°39'48"E 1815 2001 Rainfall & temperature (Hourly) 

(4) Sauze – La Rente 44°21'24"N 6°41'55"E 1680 1991 Rainfall & temperature (Hourly) 

(5) La Condamine 44°27'39"N 6°44'46"E 1325 1955 Rainfall & temperature (Daily) 

(6) St-Paul 44°35'30"N 6°50'30"E 1903 1971 Rainfall & temperature (Daily) 

(7) Allos 44°13'36"N 6°37'54"E 1370 1971 Rainfall & temperature (Daily) 

(8) Uvernet-Fours 44°19'06"N 6°41'30"E 1660 1955 Rainfall & temperature (Daily) 
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For this work, the information on rainfall events was checked in order to identify: duplicate 
events, events for which the rainfall information was not considered as relevant or sufficiently 
documented. These events were excluded from the catalogue. Soil slides or debris flows that 
were not caused only by rainfall (e.g., related to rapid snow melting) were also excluded. At 
the end of the review process, a catalogue of 106 mass-movement events (53 debris flows and 
53 soil slides, see Figure 16) was used for the daily rainfall analysis (section 5.2.1); 12 events 
(6 debris flows and 6 soil slides, see Figure 17) were used for the hourly rainfall analysis 
(section 5.2.2). 

 
Figure 16. View on a sample of the database. Label “Land_” corresponds to soil 

slides; label “DF_” corresponds to debris flows. P0 is the total amount of 
rainfall for the day of occurrence of the event. 

 
Figure 17. Orthophoto of the Barcelonnette basin and location of the mass movement 

events. The blue triangles correspond to debris flows, the red hexagons 
correspond to soil slides. 
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4.3 SOUTH-EASTERN NORWAY 

The dataset comprises the Nedre Romerike area in South-Eastern Norway. The Norwegian 
landslide database includes 30 earth slides (not induced by human activity) in the Nedre 
Romerike area. All these events were triggered during autumn 2000. Many of these landslides 
occurred near rivers and lake shores. The terrain is characterised by flat open areas that are cut 
by steep river ravines. The terrain was formed from river and marine sediments after the last 
ice age. The ground consists mainly of a thin layer of soils of grain sizes varying from gravel 
to clay. There are large areas of desalinated marine quick clays. In South-Eastern Norway, 
major historical landslides have occurred in these quick clay deposits leading to the 
destruction of property and loss of lives (Jørstad 1968; Karlsrud and Lillevik 1984; Karlsrud 
et al. 1985; Furseth 2006). The area is ideal for farming and comprises a significant fraction 
of the farm land in Norway. Due to the high population density in this area, there is a strong 
pressure on authorities for reduction of landslide risk in the area. The dataset of landslide 
events in South-Eastern Norway during autumn 2000 has been described in detail by Jaedicke 
and Kleven (2008). The distribution of landslides is shown in Figure 18. The time-uncertainty 
of these events ranges between 1 day and 64 days. Daily data from the station Skedsmo-
Hellerud (1972-2003) was used for estimating precipitation conditions. This data was 
retrieved from eKlima (http://eklima.no), the web portal of the Norwegian Meteorological 
Institute. 

A typical event from this crisis is shown in Figure 19. Even though the return period of the 2-
week antecedent precipitation barely exceeded 10 years, the accumulated precipitation over 
the previous 50 days corresponded to a much larger return period: approximately 150 years 
(based on the analyses of events that occurred on 30 November 2000, see Figure 20). 
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Figure 18. South-Eastern Norway: landslide inventory during autumn 2000 and 
surficial deposits (Jaedicke and Kleven 2008). The landslide events used 
for estimation of thresholds in the present study are inside the black 
square (east of Oslo) in the Nedre Romerike area. 
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Figure 19. Landslide at Dorr, Minnesund, South-Eastern Norway triggered on 22 
November 2000 (Jaedicke and Kleven 2008). 

 

Figure 20. Return period of antecedent precipitation for events occurring on 30 
November 2000 (Jaedicke and Kleven 2008). 
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4.4 SARNO, SATRIANO AND VERZINO (ITALY) 

Datasets containing three landslide sites have been provided; two of them are located in the 
Calabria region, the third one in the Campania region: 

1) Sarno (Campania region); 
2) Satriano (Calabria region); 
3) Verzino (Calabria region). 

The datasets for each case consist of precipitation data and dates of historical movement. 
These data are necessary for applying empirical models. The precipitation data consists of 
daily rainfall data. The criteria for selecting the rain gauge were the proximity to the landslide 
site, and the completeness of the time series. The following paragraphs describe the selected 
landslide sites. 
 
4.4.1 Sarno 

Sarno is located at the toe of the Pizzo d’Alvano massif which is located in the Campania 
Apennines of Southern Italy, about 30 km from Naples (Figure 21). The historical mobility 
date is 5 May 1998. 
 

Figure 21. Landslide site in Sarno, Italy. 

On 5 May 1998, more than 100 slides were triggered on the Pizzo d’Alvano Mountain, due to 
a meteorological event characterised by heavy and prolonged rainfall. Many slides 
transformed into mudflows which hit the urban areas of four small towns, including Sarno. In 
Sarno, the affected area was about 2 square kilometres (Figure 22). As a consequence of these 
events, 159 people died. The rain gauge considered for this site is the Santa Maria la Foce 
station. The dataset contains the daily rain data recorded since 1 January 1919 to 31 
December 1998. 

GENERAL INFORMATION 
 
Region:                        Campania 
Municipality:               Sarno  
Province:                      Salerno 
Hydrographic Basin:   Tuostolo - Scalandrone 
Cartographic datum      I.G.M: F.448116 

Sarn



Deliverable 1.5 
Statistical and empirical models for prediction of precipitation-induced landslides 
 
 

 
 
Grant Agreement No.: 226479  Page 56 of 159 
SafeLand - FP7 

 

Figure 22. Rain gauge location and main mudflows in the Sarno area. 

The bedrock is mainly limestone, dolomitic limestone and marly limestone. The Pizzo 
d’Alvano slopes are mantled by pyroclastic soils, derived from the explosive phases of the 
Somma-Vesuvius volcanic activity, both as primary air-fall deposits and as secondary 
deposits. The first ones are constituted by pumice and ash; the secondary deposits have been 
re-worked by sheet erosion and by mass-wasting processes. These deposits are present as 
debris and colluvium in a vast area; air-fail deposits covered a wide area reaching distances up 
to 50 km. The thickness of the pyroclastic cover varies from less than 1 m up to 15-20 m. 
Pumiceous and ashy deposits belonging to at least 5 different eruptions were recognized. 
From the older to the younger, they are: Ottaviano Pumice (8000 years B.P.), Avellino Pumice 
(3800 years B.P.), 79 A.D. Pumice, 472 A.D. Pumice, 1631 A.D. Pumice. 

4.4.2 Satriano 

Satriano is a village located close to the city of Catanzaro, in the Calabria region (southern 
Italy). The historical movement dates are on 18 October 1951 and 2 January 1973. 
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Figure 23. Landslide site in Satriano, Italy. 

The landslide movement int the Satriano area is a slide evolving in a flow. The precipitation 
data was recorded by the Chiaravalle Centrale rain gauge, from 1 January 1951 to 30 June 
2000. 

In the area outcrops, on the structure of igneous acid coarse rocks of the Paleozoic, a 
stratigraphic sequence constituted from the bottom layer by: 

1. Sandy conglomerates with cobblestones, generally rounded, of granite and 
metamorphic rocks. 

2. Coarse sands, non fossiliferous, with conglomeratic horizons 
3. Clays and marls, of colour from grey-azure to white, with thin intercalations of sands 

and silts with rich microfauna. There are also sands, gravels, conglomerates of the 
Pleistocene and Holocenic warpes.   

Two faults with throw and direction NE-SW have been identified. The high primary 
permeability in sands and conglomerates allows groundwater circulation and storage in these 
deposits. 

GENERAL INFORMATION 
 
Region:                         Calabria 
Municipality:               Satriano  
Province:                     Catanzaro 
Hydrographic Basin:   Ancinale basin 
Cartographic datum     I.G.M: F.242 – III SO C 

Satriano
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Figure 24. Map of the Satriano area. 

4.4.3 Verzino 

Verzino is a village 49 km from Crotone, in the Calabria region (southern Italy). The 
historical mobility date is 8 January 1991. The landslide was a complex movement. 

Figure 25. Landslide site in Verzino, Italy. 

GENERAL INFORMATION 
 
Region:                         Calabria 
Municipality:                Verzino  
Province:                      Crotone 
Hydrographic Basin:    Vitravo basin 
Cartographic datum      I.G.M: F.237 – I NE D 

Verzin
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The rain gauge considered is the Verzino rain gauge. The dataset consists of daily rainfall data 
recorded from 1 September 1921 to 26 March 2000. 

The area presents a sequence of sedimentary soils. From the lower to the upper layer there 
are: conglomerates, coarse sandstones and conglomerates that, proceeding to high, pass to a 
clayey-siltic unit, while at the south of the Verzino outcrop, there are white clays, marls and 
diatomites. This unit consists of gypsum, gypsum-sandstones and passing, proceeding to high, 
to clays with sandstones and limestones. In the upper zone white limestones prevail. In the 
Verzino area, the upper-Miocenic soils have a synclinal structure at large scale; in fact along 
the creeks, the metamorphic substratum and the inferior sedimentary units outcrop. 
Groundwater circulation is influenced by soil heterogeneity. A first hydrogeological block is 
represented by formations with conglomerate-sandstones and clays; a second one is 
represented by formations of gypsum, clays with sandstones and limestones. There is shallow 
groundwater recognized by several springs. 

 

Figure 26. Map of the Verzino area. 
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4.5 WESTERN NORWAY 

The dataset from Western Norway corresponds to the Norangselva catchment. The location of 
the catchment is shown in Figure 27 with the precipitation regions of Norway. 

 

Figure 27. Precipitation regions of Norway and location of the case study area, the 
Norangselva catchment (highlighted area in precipitation region No. 8). 
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The Norangselva catchment has an area of 56 km2 and is located in the county of Møre og 
Romsdal covering the municipalities of Ørsta and Stranda. Figure 28 shows a hillshade map 
of the catchment and the distribution of landslide incidents in the dataset. All the landslides 
were reported by the road authorities. In consistence with this, note that the locations of the 
incidents follow the road. 

 

Figure 28.  Landslide incidents at the Norangselva catchment (catchment No. 097.4Z). 
Area of catchment: 56 km2; County: Møre og Romsdal; Municipalities: 
Ørsta and Stranda. 

Soil slides and debris flows incidents at the catchment are associated with remobilization of 
deposits along channels and ruptures on moraine or weathered materials. Rock slides and rock 
falls occur due to rupture of gneiss in steep slopes. Figure 29 shows the distribution of 
surficial deposits and Figure 30 shows the bedrock geology of the area. 

The dataset comprises 90 landslides from 1892 to 2005. The distribution according to their 
type is as follows: 

 Debris flows: 13 
 Soil slides: 54 
 Rock falls and rock avalanches: 23 

A summary of the dataset is shown in Table 9. 



Deliverable 1.5 
Statistical and empirical models for prediction of precipitation-induced landslides 
 
 

 
 
Grant Agreement No.: 226479  Page 62 of 159 
SafeLand - FP7 

 

Figure 29. Surficial deposits at the Norangselva catchment. 
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Figure 30. Bedrock geology at the Norangselva catchment. 
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Table 9. Landslide incidents at Norangselva catchment. Note: all events, except 
1892, 1908, and 1926, were reported originally by the Norwegian Public 
Roads Administration (http://www.vegvesen.no/en/Home). 

Year  M  D  H  Min 

Land
slides 

Debris 
flows (#) 

Soil slides (#) Rock falls and 
Rock slides (#) 

Dist1 
(§) 
(km) 

Dist2 
(*) 
(km)

1892  ‐  ‐  ‐  ‐  1      1   (?)  

1900  1  1  0  0  1  1   (30)      

1908  ‐  ‐  ‐  ‐  1      1   (1000000)   

1926  ‐  ‐  ‐  ‐  1      1   (?)  

1992  12  15  18  0  1  1   (1300)  

1993  1  11  23  0  4    4   (?)   6.1 

1993  1  27  5  15  1    1   (500)    

1993  10  14  7  15  1      1   (10)  

1993  12  12  7  0  4  4   (100‐1000) 2.0 

1993  12  18  17  0  2    2   (35‐600)   0.8 

1993  12  31  20  0  4    4   (125‐1440)   3.8 

1994  10  6  13  0  1  1   (125)  

1994  12  25  9  0  1    1   (900)    
0.05 

1994  12  27  11  0  1    1   (400)    

1995  5  24  6  30  1    1   (350)    

1995  8  1  22  0  8    7   (50‐375) 1   (375) 3.1 

1997  1  30  12  0  2    2   (?)   1.9 

1997  2  3  20  0  1    1   (?)    
0.5 

1997  2  5  8  0  1  1   (?)  

1997  2  12  13  30  1    1   (950)    

1997  10  23  18  0  1    1   (?)    

1998  2  2  17  0  1    1   (?)    

0.0 1998  2  3  17  0  1  1   (?)  

1998  2  4  12  0  1    1   (?)    

1998  2  28  18  0  1    1   (?)    

1998  3  3  22  0  1  1   (?)  
0.0 

1998  3  4  22  0  1    1   (?)    

1999  2  5  18  0  1    1   (?)    

1999  2  15  10  0  1    1   (?)    

1999  3  29  13  0  1  1   (560)  
1.8 

1999  3  30  5  0  1    1   (1000)    

1999  11  4  0  0  2    2   (?)   0.3 

1999  12  16  0  0  4  4   (?) 6.3 

2000  5  22  0  0  4    4   (?)   6.3 

2001  7  10  14  0  1      1   (?)  

2001  11  2  0  0  1  1   (?)       5.5
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2001  11  2  10  0  1  1   (?)  

2001  11  2  12  0  1    1   (?)    

2001  11  10  0  0  3      3   (?) 0.2 
0.2 

2001  11  10  6  30  1      1   (?)  

2002  10  24  17  0  2  2   (?) 0.06 

2003  2  16  8  0  1      1   (?)  

2003  4  21  18  30  3      3   (?) 3.2 

2003  5  2  17  30  1  1   (3)  

2003  8  15  12  0  8  8   (5‐100)     3.6 

2003  10  9  0  0  2  2   (30, ?)     2.1 

2004  3  19  8  0  1      1   (?)  

2004  4  3  14  55  1  1   (?)  

2005  1  2  9  45  1      1   (?)  
0.0 

2005  1  2  10  20  1      1   (?)  

2005  5  16  19  0  1  1   (?)  

2005  8  18  19  0  1      1   (?)  

Σ  90  13 54 23  

Notes: 
M: month; D: day; H: hour; 
#: number of incidents (range of volumes in m3) 
§: maximum distance between incidents occurring at the same date and time 
*: maximum distance between consecutive incidents occurring within 72 hours 
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5 MODEL EVALUATION 

5.1 LA FRASSE (SWITZERLAND) 

The case study was tackled with two methods: 1) the linear black-box models for time series 
prediction; 2) their nonlinear counterparts implemented through the utilization of neural 
network models. 

The data set includes data of 161 monthly cumulated displacements for the period 1982 – 
1995. The first 128 patterns of the whole data set were used as the training set, whereas the 
remaining 33 patterns (including the main crisis in 1994) were used as the validation set. The 
model providing the best results was in this case the ARX 441, which is an ARX model with 

4an   , 4bn   and 1kn   (for all the 28 input channels, i.e. the daily rainy in the previous 28 

days). These parameters were estimated minimizing the sum of squares of the right-hand side 
minus the left-hand side of the expression (49), with respect to a and b. 

In Figure 31, the results of the one-step-ahead forecasts obtained with the ARX441 model on 
the training set are shown. The percentage of the output variation that is explained by the 
model is also computed and displayed in the figure. It is given by the expression: 
















)(

1100
ymeany

yyh
fit  55

where yh is the model output (i.e. the output predicted by the model) and y is the measured 
output of the system. 

Figure 32 depicts the one-step-ahead forecasts of the same model on the validation set. In this 
case the model behaves well, which means that it has good generalization ability. Figure 33 
shows a zoom of the last part of the graph showed in Figure 32, where the slight difference 
can be observed between the forecasted and the measured values. 
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Figure 31. Model ARX 441: Comparison of measured and predicted values for the 

training set. 

 
Figure 32. Model ARX 441: Comparison of measured and predicted values for the 

validation set. 
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Figure 33. Zoom of the last part of the graph shown in Figure 32. 

The second approach, based on the nonlinear versions of the time series forecasting models, 
was also attempted. Since the time series do not exhibit marked nonlinearity features, these 
models did not yield very good results. 

In the case study under analysis, the models yielding the best results were the NNARX and 
NNARMAX models (see Figure 9). 

Different structures of the models were tried. As an example, Figure 34 and Figure 35 show 
the results of a the one-step-ahead forecasts obtained with a model NNARMAX 2121 (na=2; 
nb=1; nc=2; nk=1), respectively on the training set and on the validation set. The lower part of 
the figures also show the evolution of the prediction error. It is possible to see that in this case 
the model does not have a good generalization performance. 
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Figure 34. Model NNARMAX 2121: Comparison of measured and predicted values 

for the training set. 

 
Figure 35. Model NNARMAX 2121: Comparison of measured and predicted values 

for the validation set. 
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5.2 BARCELONNETTE (FRANCE) 

The present work is focused on rainfall thresholds defined on empirical bases. The objective 
of this work is to analyze the relationships between two types of mass movements (shallow 
soil slides and debris flows) and different patterns of rainfall at different temporal scales. 

5.2.1 Antecedent precipitation analysis 

Antecedent rainfall analysis is of primary interest for landslide hazard assessment; in fact 
antecedent rainfall controls groundwater levels and soil moisture conditions which are two of 
the main triggering factors of slope failures (Crozier 1986; Wieczorek 1996). Antecedent 
precipitation can be used in some cases to determine when landslides are likely to occur. 

When using antecedent rainfall measurements to predict landslide occurrence, a key difficulty 
is the definition of the period over which to accumulate precipitation. Usually, such analyses 
reveal a significant scatter according to the period in consideration (e.g., Guzzetti et al. 2007). 

In this work, several periods have been investigated: 180, 150, 120, 90, 60, 30, 14, 7, 6, 5, 4, 3 
and 2 days before the event. Using the daily rainfall and the antecedent rainfall for a 30-day 
period, four main types of rainfall event can be distinguished (Figure 36): 

(1) Type A: this situation is characterised by heavy daily rainfall (recorded by most of the 
rain gauges of the Barcelonnette basin) following a 30-day dry period. For most of the 
observed events, this climate situation corresponds to violent generalised summer 
storms; 

(2) Type B: this situation exhibits the same pattern as Type A, except that the rainfall 
event has been recorded in a single rain gauge while the neighbouring rain gauges 
have little or no precipitation. In this case, the summer storm is concentrated in a small 
area (typically a single crest); 

(3) Type C: this situation is characterised by heavy cumulative rainfall distributed over a 
very rainy period of 30 days. This climate situation characterises either the progressive 
saturation of the topsoil, the rising of a permanent groundwater table and the build-up 
of positive pore pressures. Cumulative rainfall over a short period is sometimes 
enough to trigger a debris flow, even though little rainfall is observed on the date of 
occurrence; 

(4) Type D: this situation characterises absence of rainfall events for a given day of 
occurrence of a landslides or a debris-flow event. This can be related to two main 
explanations: (a) the triggering is due to a rapid snow melt without any liquid rain, (b) 
the rainfall occurs as a localised hailstorm not recorded by the rainfall station. 
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Figure 36. Four different types of rainfall pattern defined on the base of daily rainfall 
and antecedent rainfall (30 days). 

Considering the two main types of mass movements, the rainfall patterns are quite different 
for soil slides and debris flows. Type A and B are mostly associated to debris flow events, 
while Type C is more or less associated to the occurrence of soil slide events. Figure 37 
shows all the considered antecedent rainfall periods for all the events. A clear distinction can 
be observed between soil slides and debris flows. Most of the debris flows occurs after a 7-
day dry period while soil slide triggering or reactivation needs at least 40 mm of antecedent 
precipitation during the last 7 days (Figure 37). For a larger time scale, results show that 
debris flows never occurred when the antecedent rainfall for the 180-day period exceeds 410 
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mm. On the contrary, antecedent rainfall for a 180-day period has to be at least 205 mm in 
order to trigger a soil slide. 

 

Figure 37. Antecedent cumulative rainfall for debris flows and soil slides in the 
Barcelonnette Basin for different periods: 180, 150, 120, 90, 60, 30, 14, 7, 6, 
5, 4, 3 and 2-days periods before the event. 

Although, the correlation between events and the rainfall of the triggering date is quite good, 
no threshold can be established due to the inaccurate knowledge on rainfall variability, 
especially in the upper part of hillslopes. 

5.2.2 I-D model 

5.2.2.1 Visual classification 

Twelve events (six debris flows and six soil slides) occurred after 1998; for these events, 
hourly rainfall data were available from the Barcelonnette station. All the available Intensity-
Duration (ID) data was plotted in a single graph (Figure 38): 

(1) For debris flows, the rain intensity ranges from 2.7 to 30 mm.h-1, and the total duration 
of the event ranges from 1 to 7 hours; 

(2) For soil slides, the rain intensity ranges from 0.5 to 1.8 mm.h-1, and the total duration 
of the event ranges from 8 to 30 hours. 
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Figure 38. Rainfall intensity duration (ID) for 12 events in the Barcelonnette basin: 

blue points correspond to debris flow events, red points correspond to soil 
slide events. 

For the purposes of threshold estimation, and in order to better constrain the threshold within 
a range of durations, some authors (e.g., Moody and Martin 2001; Godt et al. 2006; Cannon et 
al. 2008) have suggested that storms should be characterised using both mean intensities and 
also peak intensities for a selection of durations. Such analyses have been performed for the 
twelve mass movement events (Figure 39). 

 

Figure 39. Peak intensities for a selection of duration (12, 6, 5, 4, 3, 2 and 1-hour 
period) for 12 events in the Barcelonnette basin: blue points correspond to 
debris flow events, red points correspond to soil slide events. 
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From a general point of view, the general shape of the curves are quite similar, and show a 
clear descending trend of the minimum level of average rainfall intensity with increasing 
rainfall duration. Plotted peak intensities show a similar trend than Figure 37 with a clear 
distinction between rainfall patterns for debris flows and soil slides: 

 Events characterised by high rainfall intensity (average and peak) and short episode 
duration (e.g., mostly the result of localized convective (hail)storms) will trigger mostly 
debris flows and shallow soil slides in relatively permeable soils (e.g., moraines, scree or 
poorly sorted slope deposits); 

 Long rainfall periods characterised by low to moderate average and peak rainfall intensity 
(e.g., the result of multiple and successive storms during a period of several weeks or 
months) can trigger or reactivate shallow and deep-seated landslides in low permeability 
soils and rocks (e.g., black marls). 

It is possible to assess the performance of these thresholds by analysing all rainfall events 
(i.e., both, the landslide triggering and the non-triggering). The hourly data consists of 874 
rainfall events. The classification statistics (see Table 4 and Equations 13 and 14 for 
definitions) of the thresholds estimated in Figure 38 are shown in Table 10. 

Table 10. Classification statistics for intensity-duration thresholds. 

Parameters of classification 
statistics  

FP 
(false 

alarms)

TN FPR TP 
(predicted 
landslides)

FN 
(missed 
events) 

TPR

Soil slide threshold – all 
events 

269 589 0.31 12 4 0.75

Soil slide threshold – soil 
slides 

276 590 0.32 
 

5 3 0.63

Soil slide threshold – debris 
flows 

274 593 0.32 7 0 1.00

Debris flow threshold – all 
events 

107 751 0.12 8 8 0.50

Debris flow threshold – soil 
slides 

113 753 0.13 2 6 0.25

Debris flow threshold – 
debris flows 

109 758 0.13 6 1 0.86

Note: see Table 4 and Equations 13 and 14 for definitions of parameters for classification 
statistics. 

5.2.2.2 Discriminant analyses  

Based on the hourly rainfall data (i.e., from 1998), the discriminant analyses classification 
technique was used for these three datasets and the Intensity-Duration model: (i) all the 
landslide events (both soil slides and debris flows), (ii) debris flows only, and (iii) soil slides 
only. 

a. All landslide events. 
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Figure 40b shows the variation of the misclassification error rate vs. the prior probability of 
landslides in the discriminant analyses of all landslide events using the Intensity-Duration 
model. The threshold corresponding to 90% prior probability of landslides is shown in Figure 
40a. The corresponding equation is: 

277.0125.1  DI 56

(A) (B) 
Figure 40. Results of discriminant analyses using all landslide events (soil slides and 

debris flows) at Barcelonnette. (A) Intensity-Duration plot showing the 
threshold for a 90% prior probability of landslides and the rainfall events 
(blue dots and red circles are non-triggering and landslide-triggering 
rainfall events, respectively). (B) Misclassification error rate vs. prior 
probability of landslides. 

b. Debris flows. 

Figure 41b shows the variation of the misclassification error rate vs. the prior probability of 
debris flows in the discriminant analyses using the Intensity-Duration model. The threshold 
corresponding to 34% prior probability of debris flows is shown in Figure 41a. The 
corresponding equation is: 

275.0297.4  DI
57
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Figure 41. Results of discriminant analyses for debris flow events at Barcelonnette 
considering only durations ranging from 1 to 9 hours. (A) Intensity-
Duration plot showing the threshold for a 34% prior probability of debris 
flows and the rainfall events (blue dots and red circles are non-triggering 
and debris flow-triggering rainfall events, respectively). (B) 
Misclassification error rate vs. prior probability of debris flows. 

c. Soil slides. 

Figure 42b shows the variation of the misclassification error rate vs. the prior probability of 
soils slides in the discriminant analyses using the Intensity-Duration model. The threshold 
corresponding to 50% prior probability of soil slides is shown in Figure 42a. The 
corresponding equation is: 

53.133.20  DI
58

 

(A) (B)

Figure 42. Results of discriminant analyses for soil slide events at Barcelonnette 
considering only durations ranging from 3 to 17 hours. (A) Intensity-
Duration plot showing the threshold for a 50% prior probability of soil 
slides and the rainfall events (blue dots and red circles are non-triggering 
and soil slide-triggering rainfall events, respectively). (B) Misclassification 
error rate vs. prior probability of soil slides. 

A set of parameters in the Intensity-Duration model were estimated by varying the prior 
probabilities of soil slides from 0.01 to 0.99. These parameters were used to obtain the 
corresponding ROC curve for the Intensity-Duration model, which is shown in Figure 43. The 
area under this ROC curve, AUC, is 0.6833, and the minimum distance to the point of perfect 
classification (0,1) is 0.4608. 
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Figure 43. Receiver Operating Characteristic (ROC) curve for the Intensity-Duration 

model obtained using discriminant analyses. The circle marker shows the 
classifier for the visual estimate of the model as calculated in section 
5.2.2.1. 

5.2.3 I-A-D model 

The Intensity-Duration threshold equation for debris flows (Equation 56) was considered 
satisfactory with a misclassification error rate lower than 0.04. Furthermore, the power law 
form of the Intensity-Duration model seems to be adequate for characterisation of triggering 
conditions for debris flows (e.g., see section 2.4). However, the corresponding threshold for 
soil slides produced a relatively low performance, evidenced by misclassification error rates 
larger than 0.35 for 50% of prior (Figure 42b). An improvement in the threshold for soil slides 
was attempted by using the Intensity-Antecedent Precipitation-Duration model presented in 
section 2.5. 

Applying a discriminant analysis to the hourly dataset from Barcelonnette, and using a prior 
probability of 50%, the variation of the misclassification error rate vs the number of days of 
antecedent precipitation (n) was estimated. The result is shown in Figure 44b. It can be noted 
that the minimum misclassification error rate occurs for n = 14 days. The corresponding 
threshold is shown in Figure 44a. 
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(A) (B) 
Figure 44. Results of discriminant analyses for soil slides events at Barcelonnette 

considering only durations ranging from 3 to 17 hours and using the I-A-D 
model. (A) Intensity-Antecedent precipitation-Duration (I-A-D) plot 
showing the threshold for a 50% prior probability of soil slides and the 
rainfall events (blue dots and red circles are non-triggering and soil slide-
triggering rainfall events, respectively). (B) Misclassification error rate vs. 
number of days of antecedent precipitation (for a 50% prior probability of 
soil slides). The red dashed line is the misclassification error rate for the 
corresponding I-D model. 

The equation of the threshold for the I-A-D model for n = 14 days (Figure 44a) is: 

5092.13340.0
1482.53  DAI d

59

A more comprehensive assessment of the performance of the I-A-D model can be obtained by 
estimating ROC curves for several values of n. In this case, n = 1, 2, 3, … , 360 days. The 
ROC curve for each case was obtained by varying the prior probabilities from 0.01 to 0.99 
using 0.01 increments. For each ROC curve, the area AUC and the minimum distance to the 
perfect classifier (FPR = 0, TPR = 1) were obtained. The variations of AUC and minimum 
distance to perfect classificer vs n are shown in Figure 45 and Figure 46, respectively. 

An overall perspective of the performance of the I-A-D model for varying values of n can be 
made by combining Figure 45 and Figure 46. The result is presented in Figure 47. It can be 
seen that values of n between 20 and 30 days have the best performance in terms of AUC, 
while n between 170 and 175 days are the best in terms of distance to the perfect classifier. 
The parameter AUC is given priority for qualifying the performance of the model, so a 
threshold model for n = 23 days was selected. 

A comparison of the ROC curves for the ID model and the IAD model (for n = 23 days) is 
presented in Figure 48. 

The IAD threshold for n = 23 days and for the set of parameters that produces the minimum 
distance to the perfect classifier is shown in Figure 49. The equation of this threshold plane is: 

5163.16788.0
232.181  DAI d
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Figure 45. Results of discriminant analyses for soil slides at Barcelonnette 

considering only durations ranging from 3 to 17 hours and using the I-A-D 
model: area under the ROC curve (AUC) vs. number of days of 
antecedent precipitation. The red dashed line is the value of AUC for the 
I-D model (section 5.2.2.2 and Figure 43). The performance of the model 
improves as AUC increases. 
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Figure 46. Results of discriminant analyses for soil slides at Barcelonnette 

considering only durations ranging from 3 to 17 hours and using the I-A-D 
model: minimum distance of ROC curve to perfect classifier (FPR = 0, 
TPR = 1) vs. number of days of antecedent precipitation. The red dashed 
line is the value of minimum distance for the I-D model (section 5.2.2.2 
and Figure 43). The performance of the model improves as the distance 
decreases. 
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Figure 47. Results of discriminant analyses for soil slides at Barcelonnette 

considering only durations ranging from 3 to 17 hours and using the I-A-D 
model: area under the ROC curve vs. minimum distance to perfect 
classifier (FPR = 0, TPR = 1). The colours of the markers correspond to n, 
(number of days for antecedent precipitation) and are explained by the 
colour bar to the right. For comparison, the performance of the I-D model 
(section 5.2.2.2) is represented by the X marker. 
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Figure 48. Comparison of ROC curves for ID model and for IAD model (n = 23 

days). 
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Figure 49. Intensity-Antecedent Precipitation-Duration (IAD) threshold for soil slides 

in Barcelonnette for n = 23 days of antecedent precipitation. The blue and 
red markers are non-triggering and triggering precipitation events, 
respectively. 
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5.2.4 FLaIR model 

The FLaIR model has been applied to Barcelonnette data by: 
a) Selection of landslide events; 
b) FLaIR calibration and evaluation. 

From the whole dataset of historical movements, only the records associated to landslide 
events (glissement de terrain) were selected. Moreover, the period 1950-1980 was considered 
for FLaIR calibration, while the period 1981-2009 was used for model validation. 

Selection of landslide events 

As an initial step, for both the calibration and validation periods, a landslide event was chosen 
from the historical database only if the field “CAUSE” was rainfall. 

In a second step, the following operations were carried out for every landslide movement: 
1. The start date related to the associated rainfall event is identified; 
2. For each day between the start date of a rainfall event and the landslide occurrence, 

the antecedent cumulated rainfalls, with durations ranging from 1 to 30 days, are 
evaluated; 

3. For each duration, the maximum rainfall height is computed; 
4. For each one of the durations, the values estimated on step 3 are compared with the 

corresponding mean values of the annual maximum. 

A movement date was definitively selected if, for all the considered durations, the maximum 
rainfall heights estimated at point 3 were greater than 50% of the mean values of the annual 
maximum rainfall corresponding to the same durations (point 4). The aim is to select only 
events with similar characteristics and that have been triggered by rainfall. 

Table 11 shows all the landslide events, both the included in the analyses (black font) and 
those that were excluded (red font). After the selection, 6 events were within the calibration 
period and one in the validation period. 

Figure 50 shows the daily rainfall histogram. The precipitation events on landslide days are 
indicated by red bars. 
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Table 11. List of landslide events (black font for events included in the analyses, and 
red font for those excluded). 

  Maximum rainfall heights (mm) 
Landslide Date Start date of rainfall event 1 day 5 days 10 days 15 days 30 days 
CALIBRATION PERIOD  
13/3/1951 10/3/1951 49.8 87.6 95.1 95.1 176 
26/5/1956 22/05/1956 13.1 27.2 38.7 40.3 45.2 
18/10/1960 05/10/1960 36.8 78.7 106.1 120.9 237.4 
12/9/1964 12/9/1964 13.1 13.1 37.8 43.5 64.6 
2/3/1966 21/02/1966 40.5 62.2 72.8 81.3 94.1 
21/3/1971 18/3/1971 52.6 109.5 140 140 140 
22/10/1977 07/10/1977 43.3 106.6 107.8 115.3 144 
14/1/1978 11/01/1978 29.7 86.9 86.9 86.9 95.8 
VALIDATION PERIOD  
21/6/1983 21/6/1983 3.6 16.3 16.3 20.3 38.6 
12/3/1986 12/3/1986 13.1 13.1 13.1 13.2 70.6 
9/3/1994 27/02/1994 24.8 39 44.3 43.3 56.4 
10/11/2000 06/11/2000 32.6 64 80.8 80.8 185 

 
50% of annual maximum 
expected value 25.10 44.15 55.35 65.68 86.20 

 
Figure 50. Barcelonnette: daily rainfall histogram. 
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FLaIR calibration and evaluation 

A threshold P0 (section 2.7) equal to 30 mm for daily rainfall was applied (this value is close 
to the minimum value of the daily precipitation for the considered events in Table 11). 

The Gamma function was used as the transfer function  . : 

    00
1 1 





 


 
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a
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For calibration, the ranking technique (section 2.7) was used. The minimum value of false 
alarms with no missed alarms was obtained for 1.1  and 1 day, for which FA = 23 and 

92.21, crFY . So, according to section 3.2, this set of parameters was adopted. 

Figure 51 shows the transfer function  . , and Figure 52 shows the associated ROC curve, 
which was evaluated by setting crFY ,  equal to the YF() values estimated in the days of 

landslide events (Table 12) and then by assessing for each threshold the metrics FA and HR. 
The corresponding AUC has a maximum value equal to 0.953. Figure 53 shows the computed 
mobility function. 

 
Figure 51. Barcelonnette: transfer function of the FLaIR model. 
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Table 12. Calibration period: values of the mobility function and metrics of the 
ROC space for the historical events. 

Date 13/03/1951 18/10/1951 02/03/1966 21/03/1971 22/10/1977 14/01/1978
YF, cr 22.08 22.23 21.92 26.37 24.13 23.21 
FA 23 20 23 4 13 18 
MA 1 2 0 5 4 3 
CA 5 4 6 1 2 3 
TN 294 297 294 313 304 299 
FAR 0.073 0.063 0.073 0.013 0.041 0.057 
HR 0.833 0.667 1.000 0.167 0.333 0.500 

Regarding the validation period, the threshold 92.21, crFY  provides a correct alarm on the 

date of the historical event (10/11/2000), when 01.22FY  (Figure 54). Moreover, FA=16, TN 
= 290 and consequently FAR=0.052. This implies that the FLaIR model is characterized by a 
good performance during the validation period in terms of the FAR value. 

 
Figure 52. Barcelonnette: ROC curve. 
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Figure 53. Barcelonnette – calibration period: mobility function (YF,cr = 21.92). 

 

Figure 54. Barcelonnette – validation period: mobility function (YF,cr = 21.92). 
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5.3 SOUTH-EASTERN NORWAY 

The procedure described in section 2.10 and the time-uncertainty of each event in the dataset 
that ranged between 1 and 64 days (see section 4.3) were used to compute the distribution of 
probabilities in time. The resulting distribution is shown in Figure 55. For the purposes of 
calibration of thresholds, the probabilities in Figure 55 were classified in three ranges: low, 
medium and high (see Figure 56) with boundaries at 0.1 and 0.5. 

Discriminant analyses were performed for antecedent precipitation ranging between 1 day and 
360 days using the model described in section 2.5 and Equation 3. The optimum thresholds 
(minimum misclassification error) were obtained for 46-day antecedent precipitation (see 
Figure 57). The thresholds were also obtained for three levels of time-certainty: “low”, 
“medium” and “high” (see Figure 56). Additionally, the analyses were performed taking into 
account variability in the prior probabilities of landslide events. Based on the conceptual 
framework of thresholds by Cepeda et al. (2010), these prior probabilities can be considered 
to correspond to susceptibility levels ranging from low (low prior) to high (high prior). The 
calibrated thresholds are shown in Figure 58 and the threshold values for a 50% prior 
probability are shown in Figure 56. 

 
Figure 55. Probability of earth slides vs time in the Nedre Romerike area during 

autumn 2000. The vertical axis is the probability of occurrence of at least 
one landslide in one day estimated based on the associated time-
uncertainty of each event in the landslide inventory. 
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Figure 56. Ranges of probabilities of earth slides vs time in the Nedre Romerike area 

during autumn 2000. Yellow is low probability, orange is medium and red 
is high. 
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Figure 57. Misclassification error rate for threshold model based on Equation 3 using 

the dataset from the Nedre Romerike area. The minimum error occurs for 
46 days of antecedent precipitation. 
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Figure 58. Thresholds for precipitation-induced earth slides in the Nedre Romerike 

area. The curves “low”, “medium”, and “high” indicate the time-certainty 
of landslide occurrence. The horizontal axis (prior probability of 
landslides) can be calibrated for landslide susceptibility levels (i.e., low 
prior probability for low susceptibility zones, and high prior probability 
for high susceptibility zones). 

There was also an attempt to use a threshold model as a linear combination of two different 
numbers of days of antecedent precipitation according to Equation 5 in section 2.5. The 
values of n and p in Equation 5 were varied from 1 to 360 days. The misclassification error 
rates for each combination of n and p are shown in Figure 59. The blank area in Figure 59 
corresponds to combinations that were highly correlated (R2 >= 0.8), and thus were not 
evaluated in the threshold model. A linear threshold for n = 10 days and p = 54 days is shown 
in Figure 60. 

For practical purposes, and considering the relatively low misclassification error rates, it is 
considered that the antecedent precipitation threshold based on Equation 3 (Figure 56 and 
Figure 58) is adequate for characterising triggering conditions for the Nedre Romerike area. 
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Figure 59. Misclassification error rates for the Nedre Romerike dataset applying 
threshold model of Equation 5 and varying n and p from 1 to 360 days. 
The colour bar to the right indicates the correspondence between colours 
and values of errors. 
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Figure 60. Linear threshold for the Nedre Romerike area according to Equation 5 for 

n = 10 days and p = 54 days. The colour bar to the right corresponds to the 
probability values based on the uncertainty of time occurrence (Figure 
55). 
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5.4 SATRIANO, VERZINO AND SARNO (ITALY) 

The FLaIR model has been applied to the three datasets described in section 4.4: 
1) Satriano (Calabria region); 
2) Verzino (Calabria region); 
3) Sarno (Campania region). 

For each study area, datasets with daily rainfall heights and historical movement dates were 
analyzed, in order to calibrate the model by using the technique reported in sections 2.7 and 
3.2. Once the expression of the transfer function  .  is selected, the following results are 
presented: 

a) the feasible region of the parameters, characterized by the maximum value of AUC 
(section 3.2) 

b) the transfer function  .  related to the parameters which maximize LU ffr   

(section 3.2) 
c) the mobility function. 

5.4.1 Satriano 

As reported in section 4.4, daily rainfall data of the Chiaravalle Centrale rain gauge was used. 
The data ranges from 1 January 1951 to 30 June 2000. 

The historical movement dates are: 
1) 18th October 1951; 
2) 2nd January 1973. 

In Figure 61 the daily rainfall histogram is shown. The precipitation events that triggered 
landslides are also indicated. For the historical movements, the maximum rainfall heights, 
cumulated over antecedent days (from 1 to 30) are reported in Table 13. 

Table 13. Satriano: Maximum rainfall heights for the landslide events. 

  Maximum rainfall heights (mm) 
Landslide 
Date 

Start date of rainfall 
event 1 day 5 days 10 days 15 days 30 days 

18/10/1951 15/10/1951 436.1 1020.8 1034.6 1369.9 1426.3 
2/1/1973 27/12/1972 98.7 395.9 491.4 578.8 883.7 

The gamma function is selected as transfer function  . : 
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In this case, equation 62 is characterized by a limited feasible region of the parameters, for 
which AUC is equal to 1 (Figure 62); for 9.0  and 20 days, the difference LU ffr   

assumes its maximum value, equal to 0.02, and the associated  .  is in Figure 63. Figure 64 
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shows the mobility function; YF(.) is 64.04 on 18 October 1951 and 31.71 on 2 January 1973; 
consequently, crFY ,  is set equal to 31.71. 

 
Figure 61. Satriano: daily rainfall histogram. 

 
Figure 62. Satriano: feasible region of the FlaIR model parameters (AUC = 1). 
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Figure 63. Satriano: transfer function of the FlaIR model. 

 
Figure 64. Satriano: mobility function. 

5.4.2 Verzino 

As reported in section 4.4, daily rainfall data from the Verzino rain gauge was used. The data 
ranges from 1 September 1921 to 26 March 2000. 

The historical movement date is 8 January 1991. 
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Figure 65 shows the daily rainfall histogram and highlights the precipitation on the day of the 
landslide. The maximum rainfall heights, accumulated over several antecedent days (from 1 
to 30) are presented in Table 14. 

Table 14. Verzino: maximum rainfall heights for the landslide events. 

  Maximum rainfall heights (mm) 
Date Start of rainfall event 1 day 5 days 10 days 15 days 30 days 
8/1/1991 25/12/1990 184.1 403.2 407.2 432.5 602.1 

The transfer function  .  is the gamma function, characterized by the feasible region of the 
parameters, for which AUC=1, as shown in Figure 66; for 9.0  and 6 days, the 

difference LU ffr   assumes its maximum value, equal to 0.05, and the associated  .  is 

shown in Figure 67. Figure 68 shows the mobility function; YF(.) reaches the value 49.79 on 8 
January 1991, which is assumed as the threshold crFY , . 

 
Figure 65. Verzino: daily rainfall histogram. 
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Figure 66. Verzino: feasible region of the FlaIR model parameters (AUC = 1). 

 
Figure 67. Verzino: transfer function of the FlaIR model. 
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Figure 68. Verzino: mobility function. 

5.4.3 Sarno 

As reported in section 4.4, daily rainfall data from the Sarno - Santa Maria la Foce rain gauge 
was used, ranging from 1 January 1919 to 31 December 1998. The historical movement date 
is 5 May 1998. 

In Figure 69, the daily rainfall histogram is shown, in which the precipitation related to 
landslide is indicated by the red bar. For this historical movement, the maximum rainfall 
heights, accumulated over several antecedent days (from 1 to 30) are reported in Table 15. 

Table 15. Sarno: maximum rainfall heights for the landslide events. 

  Maximum rainfall heights (mm) 
Date Start of rainfall event 1 day 5 days 10 days 15 days 30 days 
5/5/1998 4/5/1998 72.6 112.6 157.4 157.4 219.2 

For this case study, the combination of two exponential functions was assumed as  . : 

       ttt 211 exp1exp       10,021    63
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Figure 69. Sarno: daily rainfall histogram. 

Moreover, due to the soil characteristics, evapotranspiration significantly reduces the water 
content during the summer season, and consequently Y(.) = 0 is assumed at the end of the dry 
season, namely on 1 October. 

Furthermore, two values for threshold P0 (see section 2.7) were considered: 75 mm and 90 
mm. The parameters estimated by the ranking technique are shown in Table 16. In both cases, 
the maximum value of the mobility function is reached on 5 May 1998. 

Table 16. Sarno: estimation of parameters using the ranking technique. 

 Threshold P0 (mm)
 75 90 

 0.1 0.1 

 (days) 0.75 0.75 

(days) 150 80 
YF,cr 7.81 8.83 

Figure 70 shows the associated transfer functions, while in Figure 71 and Figure 72 show the 
mobility functions YF() for P0 equal to 75 mm and 90 mm, respectively. 

0

20

40

60

80

100

120

140

160

180

0
1

/0
1

/1
9

19

0
1

/0
1

/1
9

22

0
1

/0
1

/1
9

25

0
1

/0
1

/1
9

28

0
1

/0
1

/1
9

31

0
1

/0
1

/1
9

34

0
1

/0
1

/1
9

37

0
1

/0
1

/1
9

40

0
1

/0
1

/1
9

43

0
1

/0
1

/1
9

46

0
1

/0
1

/1
9

49

0
1

/0
1

/1
9

52

0
1

/0
1

/1
9

55

0
1

/0
1

/1
9

58

0
1

/0
1

/1
9

61

0
1

/0
1

/1
9

64

0
1

/0
1

/1
9

67

0
1

/0
1

/1
9

70

0
1

/0
1

/1
9

73

0
1

/0
1

/1
9

76

0
1

/0
1

/1
9

79

0
1

/0
1

/1
9

82

0
1

/0
1

/1
9

85

0
1

/0
1

/1
9

88

0
1

/0
1

/1
9

91

0
1

/0
1

/1
9

94

0
1

/0
1

/1
9

97

time (days)

D
a

il
y

 R
a

in
fa

ll
 (

m
m

)

Daily Rainfall related to landslide



Deliverable 1.5 
Statistical and empirical models for prediction of precipitation-induced landslides 
 
 

 
 
Grant Agreement No.: 226479  Page 102 of 159 
SafeLand - FP7 

 
Figure 70. Sarno: transfer functions. 

 

Figure 71. Sarno: mobility function for daily rainfall threshold equal to 75 mm. 
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Figure 72. Sarno: mobility function for daily rainfall threshold equal to 90 mm. 

In conclusion, for all the investigated case studies of the AMRA dataset, the FLaIR model can 
be considered as a Perfect Classifier, according to the ROC analysis. In fact, it is possible to 
determine transfer functions  .  and threshold values, which are able to produce forecasts 
without missed or false alarms, as long as back analyses of available data are carried out. 
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5.5 WESTERN NORWAY 

Thresholds were estimated for debris flows and soil slides using a model of antecedent 
precipitation based on Equation 3. The predictors considered in the analyses were antecedent 
precipitation values ranging between 1 and 360 days. The critical number of days of 
antecedent precipitation for debris flows and soil slides were 1 and 7 days, respectively. The 
calibrated thresholds are shown in Table 17. Note that the calibration has considered not only 
landslide-triggering precipitation, but also non-triggering events (last two columns in Table 
17). Correct and incorrect predictions are shown on the green and orange columns, 
respectively. It is a well known fact that hourly precipitation is required to adequately 
characterise triggering conditions for debris flows (e.g., Sandersen et al. 1996), so the 
threshold for debris flows given in Table 17 could be significantly improved if hourly data 
were available. 

Table 17. Thresholds for debris flows and soil slides on the Norangselva catchment. 

Type of 
landslide 

Number of days 
of antecedent 
precipitation 

Threshold 
(mm) 

Days with landslides 
Days without 

landslides 

Predicted Missed Predicted 
False 

alarms 
Debris 
flows 

1 17 3 0 4564 547 

Soil slides 7 54 25 5 3681 1403 

Discriminant analyses were also performed for this dataset by computing linear combinations 
of pairs of antecedent precipitation (e.g., 2-day with 30-day, 5-day with 45-day, etc.) from 1-
day to 360-day antecedent precipitation, using the threshold model presented in Equation 5. 
From the results of the discriminant analysis at each pair, the misclassification error was 
computed (see section 3.2). The misclassification error is a measure of the number of missed 
events and false alarms. The results for soil slides are shown in Figure 73a. It can be seen that 
durations of less than about 40 days consistently produce the lowest misclassification errors. 
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(A) (B) 
Figure 73. Misclassification errors for (A) soil slides and (B) rock falls and rock slides 

on the Norangselva catchment using the discriminant analysis method. 
The blank areas are combination pairs of antecedent precipitation that are 
strongly correlated (i.e., for the purposes of this paper, having an R-
squared value larger than 0.8), and, consequently, were not analysed. 

The lowest misclassification error in Figure 73a corresponds to n = 26 days and p = 266 days. 
The corresponding thresholds for this combination of days are shown in Figure 74. The two 
thresholds shown correspond to two different values of prior probabilities. It can be noted that 
the thresholds indicate that an increase in long-term antecedent precipitation produces an 
increase in required short-term antecedent precipitation for triggering, which is the opposite 
behaviour that should be expected (see remark at the end of section 2.5). Hence, it is 
concluded that the linear threshold model based on Equation 5 does not produce a consistent 
threshold and it is preferred to use the thresholds based on Equation 3 as presented in Table 
17. 
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Figure 74. Linear thresholds based on Equation 5 for soil slides in the Norangselva 

catchment. 

Figure 73b shows the result of the discriminant analyses for rock slides and rock falls. 
Compared to Figure 73a, a consistent pattern of low misclassification errors cannot be 
identified. Furthermore, the plot indicates that there is a predominance of higher 
misclassification errors. This low predictive capacity of precipitation for establishing 
thresholds in rock falls and avalanches confirms previous observations made by Sandersen et 
al. (1996), which were based on the analysis of 31 rock falls and rock slides from all Norway. 
Improvements in thresholds for this type of landslides can be foreseen if other factors 
influencing significant effects (e.g., freeze-thaw) are also included. 
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6 CONCLUSIONS 

The following general conclusions can be drawn from the analysed case studies and 
experiences from the reported studies, including those summarized in the appendices: 

 The analysis of hourly data, when available, indicates that the duration of triggering 
storms for initiating debris flows is less than 12 hours (e.g., see Barcelonnette case). 

 In soil slides, the antecedent moisture conditions play an important role in the 
triggering conditions, and therefore should be accounted for in the threshold models. 
These antecedent conditions can be characterised by the soil moisture (see Appendix 
C) or other equivalent proxies, such as long-term precipitation and water supply (see 
Barcelonnette, South-Eastern Norway, and Appendices B and C). 

 The contribution of snow melt to the of the water supply conditions on the slope 
should be evaluated, as it can be significant for characterising both antecedent and 
triggering conditions (see Appendix C). 

 Freeze-thaw effects should be incorporated in the assessment of thresholds for rock 
falls and rock slides in order to reduce the misclassification errors for this type of 
landslides (e.g., see Western Norway). 

 The variations of thresholds in different locations are mainly due to differences in 
lithological conditions, and in the case of soils the variations in permeability and depth 
of sediments. The soil moisture conditions (and the corresponding proxies in the 
threshold models) in areas with deep deposits of fine-grained soils (low permeability) 
are affected by long term precipitation or water supply (e.g., see South-Eastern 
Norway). In areas with shallower deposits of coarse-grained soils (high permeability), 
the response of the ground water conditions to precipitation and water supply is faster, 
and therefore the thresholds are controlled almost solely by short-term precipitation or 
water supply (e.g., see thresholds for debris flows in Barcelonnette and in Western 
Norway). 

 
The following particular conclusions can be drawn for each individual case study: 
 

 La Frasse landslide (Switzerland): 
o Empirical dynamic models can take as an input precipitation and observed 

displacement and be calibrated to produce forward predictions of landslide 
displacement. The models applied to La Frasse landslide have proved to be 
satisfactory. 

o The application of neural networks to dynamic empirical models seems to be 
promising, but the results applied to the La Frasse landslide seem to show 
some oscillations and increasing trends in the error of the model with time, 
which should be investigated further. 

 Barcelonnette (France): 
o Debris flows are triggered by storms lasting between 1 and 9 hours, and are 

adequately predicted using an Intensity-Duration threshold. 
o Soil slides are triggered by storms with durations between 3 and 17 hours. The 

prediction of soil slides requires the use of a model that incorporates 
antecedent precipitation. An Intensity-Antecedent precipitation-Duration 
model was used, showing an improvement when compared to the Intensity-
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Duration threshold. The critical antecedent precipitation was estimated equal to 
23 days. 

o The FLaIR model achieved a very good performance corresponding to an area 
under the ROC curve (AUC) equal to 0.953. 

 Western Norway: 
o Thresholds at the Norangselva catchment are defined by 1-day and 7-day 

antecedent precipitation for debris flows and soil slides, respectively. 
o Thresholds for rock falls and rock slides at the Norangselva in Western 

Norway are weakly predicted by the precipitation predictors. Other factors 
(e.g., freeze-thaw effects) need to be accounted for in order to improve the 
prediction performance of a threshold for this type of landslides. 

o Thresholds for debris flows in the dataset from the Norangselva catchment in 
Western Norway would be expected to improve with the use of hourly 
precipitation, which allows a better correlation with triggering of debris flows. 
However, representative observations are scarce due to the localised nature of 
short-duration episodes of rainfall, mainly associated with storms during the 
summer months. 

 Satriano, Verzino and Sarno (Italy): 
o The FLaIR model was calibrated with sets of parameters that achieved perfect 

classification performance (AUC = 1) for these three cases. 
 South-Eastern Norway: 

o A new method was proposed for incorporating uncertainty in time of 
occurrence in the estimation of thresholds. 

o The critical duration of antecedent precipitation for triggering of earth slides 
was estimated at 46 days. 
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8 APPENDIX A: BAYESIAN PROBABILISTIC NETWORKS (BPN) 
AND NATURAL HAZARDS 

8.1  RISK MANAGEMENT OF LARGE SCALE NATURAL HAZARDS 

 
Natural hazards comprise an important contribution to risk in most countries of the world; 
their relevant types and intensities as well as the associated risks depend strongly on the 
specific location of occurrence. In some parts of the world, natural hazards are associated 
with risks endangering the existence of the societies located there. It is hence a great 
challenge for the engineering profession to provide methods and tools enhancing decision 
making for the purpose of efficient management of natural hazards. 
 
In principle, risk management may be seen relative to the time frame of occurrence of events 
of natural hazards – i.e. risk management in the situations before, during and after the event 
of a natural hazard. This is because the possible decision alternatives or boundary conditions 
for decision making change depending on the corresponding time frame. Before a hazard 
occurs the issue of concern is to optimize investments into safeguarding or preventive 
measures such as protecting societal assets, adequately designing and strengthening 
societal infrastructure as well as developing preparedness and emergency strategies. During 
the event of a natural hazard the issue is to limit damages by rescue, evacuation and aid 
actions. After an event the situation is to some degree comparable to the situation before the 
event; however, after the event resources might be very limited and the main concern might 
be to re-establish societal functionality as well as to safeguard in regard to the possible next 
event. In Figure 1, the different decision situations and the focus of risk management for 
natural hazards are illustrated for the case of management of earthquake risks in an urban 
area. 
 

 
Figure 1: Decision situations for management of earthquake risks 

Rehabilitation of infrastructure 
functionality

Condition assessment and 
updating of reliability and risks

Optimal allocation of ressources 
for rebuliding and strengthening

Optimal allocation of available 
ressources for risk reduction

- strengthening
- rebuilding

 in regard to possible earth-
quakes

Before During After

Damage reduction/Control

Emergency help and rescue

After quake hazards



Deliverable 1.5 
Statistical and empirical models for prediction of precipitation-induced landslides 
 
 

 
 
Grant Agreement No.: 226479  Page 126 of 159 
SafeLand - FP7 

The characteristics of natural hazards are very different depending on the individual 
exposure type. Gravitational hazards such as landslides, rockfall and avalanches are 
generally suddenly occurring events. The same applies for earthquakes, tsunamis and 
volcanic eruptions. On the other hand, floods, fire storms, climatic changes and droughts are 
generally more slowly evolving. In a risk management context, the probabilistic description 
required for the characterization of the natural hazards must take into account these 
differences in order to facilitate a realistic assessment of the possible consequences 
resulting from these events as well as to allow for the identification of possible relevant 
measures of risk reduction. 
 
The consequences which potentially may be caused by such different exposures are 
manifold and generally depend strongly on the specific characteristics of the hazard as well 
as the location where it occurs. The immediate or direct consequences comprise loss of 
lives, damages to societal infrastructure and life lines as well as damages to the qualities of 
the environment. Follow-up or indirect consequences may include additional loss of lives 
caused by the outbreak of epidemics or hunger, loss of livelihoods, damages to the local 
and/or global economy as well as sociological and political effects.  
 
 
8.2 THE JCSS FRAMEWORK FOR RISK ASSESSMENT 

 
A guideline document (JCSS, 2008) describing the framework and principles for risk based 
engineering decision making has been developed by the Joint Committee on Structural 
Safety (JCSS). Further details can also be found in Faber et al. (2007a). The risk 
assessment for a given system is facilitated by considering a generic representation of the 
system as shown in Figure 2. Hazards are represented as exposures to the system and 
include any event having the potential to damage the constituents of the system. The 
constituents of the system can be considered as the first defence of the system against the 
exposures. The damages to the constituents are considered to be associated with direct 
consequences. Direct consequences may include monetary losses, loss of lives, damages to 
the qualities of the environment or changed characteristics of the constituents. 
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Figure 2: Generic representation used for the risk assessment of a system. 

 
Based on the combination of events of constituent failures and the corresponding 
consequences, indirect consequences may occur. Indirect consequences may be caused by 
e.g. the sum of monetary losses associated with the constituent failures and the physical 
changes of the asset as a whole caused by the combined effect of constituent failures. They 
may occur due to physical system changes and/or due to the societal or public perception of 
such changes. The reason for this differentiation is to indicate how risk management may 
efficiently be supported by risk communication. The better and more targeted risk 
communication undertaken before, during and after events of natural hazards, the smaller 
the consequences caused by perception will be. 
 
Based on this system representation, two system characteristics are defined – the 
vulnerability and the robustness of the system. The vulnerability of a given system 
characterizes the risk associated with the direct consequences whereas the robustness 
characterizes the degree to which the total risk is increased beyond the direct consequences. 
The description and quantification of the three characteristics – exposure, vulnerability and 
robustness is provided by the use of risk indicators. Risk indicators can be understood as 
any observable or measurable characteristic of the considered system containing information 
about its risk. In the context of landslide and rockfall hazards, the exposure can be related to 
the triggering factors for the landslides or rockfall, the vulnerability represents the physical 
process of the landslide/rockfall, damages to infrastructure and loss of lives and the 
robustness is associated with the follow-up consequences and the socio-economic or 
political impact. 
 
The risk management of large scale natural hazards requires a systematic and consistent 
representation and management of information for a typically complex system with a large 
number of constituents or sub-systems. Such representation must enable a rational 
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treatment and quantification of the various uncertainties associated with the constituents as 
well as the system. The consistent handling of new knowledge about the system and its 
constituents as and when it becomes available and its use in the risk assessment and 
decision making process is also essential. Further, the numerous dependencies and linkages 
that exist between different constituents of the system need to be systematically considered. 
The above requirements and considerations necessitate the use of generic risk models for 
the assessment and management of risks due to natural hazards. The use of Bayesian 
Probabilistic Networks (BPNs) has proven to be efficient in such risk assessment 
applications (Graf et al., 2009; Faber et al., 2007b; Nishijima and Faber, 2007; Bayraktarli et 
al., 2006; Bayraktarli et al., 2005; Faber et al. 2005; Schubert et al, 2005 and Straub, 2005). 
The following section provides an overview of the principles and use of Bayesian 
Probabilistic Networks; details can be found in Jensen (2001). 
 
 
8.3 BAYESIAN PROBABILISTIC NETWORKS – AN OVERVIEW 

 
Bayesian probabilistic networks (BPNs) or Bayesian belief networks (BBNs) have been 
developed during the last two decades, as decision support tools originally targeted for 
purposes of artificial intelligence engineering. In contrast to rule based decision support 
systems, BPNs can be considered as normative expert systems meaning that: 
 
 instead of modelling the expert they model the domain of uncertainty 
 instead of using a non-coherent probability calculus tailored for rules, they are based on 

classical probability calculus and decision theory 
 instead of replacing the expert they support her/him. 
 
BPNs are constructed on the principles of causality and interrelationships between 
considered events and variables of interest. Graphical representations of such causally 
interrelated events are called causal networks. More formally, a causal network is a set of 
variables and a set of directed links or edges between the variables representing uncertain 
events and is also referred to as a directed graph; an illustration is shown in Figure 3. The 
relationship between different variables is expressed in terms of family relations; for example, 
when the link goes from a variable A to another variable B, the variable A is a parent of B 
and B is a child of A. The variables can, in principle, have any number of discrete states or a 
continuous sample space but can only attain one realisation at a time. 
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Figure 3: Illustration of a causal network. 

 
A BPN is composed of a set of variables and a set of directed edges (or connections) 
between the variables. Each variable may have a countable or uncountable set of mutually 
exclusive states. The variables together with the directed edges form a directed acyclic 

graph. A conditional probability structure ( , , )P A B C D  is assigned to each variable A with 

parents B, C and D. 
 
It is possible to work with BPNs containing variables with continuous states as well as 
discrete states. However, for mathematical reasons, it often becomes necessary to discretise 
continuous state variables into discrete state variables. Consider that n  variables 1 2, ,.. nA A A

of a BPN are collected in the vector 1 2( , ,.. )T
nA A AU , also called the universe. In general it 

is of interest to be able to assess: 
 

i) the joint probability distribution of the universe i.e. 1 2( ) ( , ,.. )nP P A A AU  

ii) any marginalized set of the universe ( )iP A , and 

a. any conditional probability distributions subject to evidence e in regard to the 

states of individual variables, e.g. ( )iP A e . 

 
A BPN can be considered to be a special representation of such probability distributions. 
Using the chain rule of probability calculus, it is possible to write the probability distribution 
function ( )P U  in the following form:  

 
( ) ( ( ))i i

i

P P A pa AU          (1) 

where ( )ipa A  is the parent set of the variable iA . The probability distribution function for 

elements of U , e.g. for jA  can be achieved by marginalization i.e.  

 

\ \

( ) ( ) ( ( ))
j j

j i i
A A i

P A P P A pa A  
U U

U        (2) 

Evidence can now be introduced through the application of the chain rule. If it is assumed 
that evidence e  is available in terms of statements such as: “the variable A with n possible 

states for some reason can only attain realizations in state i or j with probabilities ia  or ja ”, 

B C D

A
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then the joint probability distribution is given as ( , ) (0,0,.., 0, ,.0., ,..0,0)i jP A e a a . It is seen 

that this probability distribution is achieved simply through the multiplication of ( )P A  with the 

vector (0,0,..,0,1,0,..,1,0,..,0,0) . Such vectors (or tables) are also called as findings e .  

In general terms, this can be represented as: 
 

( , ) ( )P e P eU U           (3) 
Using Equation (1) and assuming that evidence represented in terms of m findings is 
available, Equation (3) can be written as: 
 

1

( , ) ( ( ))
m

i i j
i j

P e P A pa A e


 U
       

 (4) 

Finally the conditional probability distribution functions ( )jP A e  can be derived through: 
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       (5) 

 
In summary, the steps involved in the construction of a BPN are: 
 

 Formulation of causal interrelations of events leading to the events of interest 
(consequences), in terms of nodes (variables) connected by edges (arrows). 

 Assigning to each variable a number of discrete mutually exclusive states. 
 Assigning probability structures (tables) for the states of each of the variables 

(conditional probabilities in case that the variables are child nodes). 
 Assigning consequences corresponding to the states represented by the network. 

 
BPNs can be used at any stage of a risk analysis and assessment procedure and can readily 
substitute the traditionally used fault trees and event trees in logical tree analysis. Whereas 
common cause or dependency phenomenon poses significant complications in classical fault 
tree analysis, this is not the case with BPNs. These networks are basically designed to 
facilitate the modelling of such dependencies. Finally BPNs provide an enormously strong 
tool for decision analysis, including prior analysis, posterior analysis and pre-posterior 
analysis.  
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In the following sections, the application of the described risk assessment framework 
implemented with the use of BPNs is illustrated for different natural hazards. 
 
 
8.4 EARTHQUAKE RISK MANAGEMENT USING BPNS 

 
The management of earthquake risks for a large urban area is considered in this section. 
Details can be found in Faber et al. (2007b), Bayraktarli et al. (2006) and Bayraktarli et al. 
(2005). 

 
Figure 4: Components of a GIS based risk management system.      

 
Generally, the exposures relating to natural hazards as well as the possible ensuing 
consequences can be considered to depend strongly on the specific geographical location of 
the occurrence of the event. For this reason, the use of Geographical Information Systems 
(GIS) needs to be considered in the context of natural hazards risk management. In Figure 4, 
the structure and components of a GIS based natural hazards risk management system are 
illustrated. The indicators of relevance for the characterization of exposures and 
consequences may be related to the models of the real world which form the basis for the 
risk assessment, considering the exposures, vulnerability and the robustness of the 
considered system. The risk assessed from these models and related to the real world 
through the indicators can then be managed by means of various risk reduction actions. 
 
For earthquake exposure, the indicators of interest include the characteristics of soil, types of 
building and building materials, design codes applied for the design of buildings, occupancy 
of buildings, and the time of the earthquake as well as emergency preparedness. The GIS 
platform serves as a database for storing and managing the information required for the risk 
management process and strategy optimization. The data stored in the different layers of a 
GIS data base may directly be utilized in the modelling of the risks for the system. 
 
The idea behind the application of generic BPN risk models is to identify categories of assets 
such as categories of buildings for which the risk assessment model has the principally same 
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structure. BPNs are then formulated for each category but with incorporation of the indicators 
characterizing exposures, vulnerability and robustness. In this way the individual generic risk 
models can be made specific for a given asset (e.g. building) by relating the risk model to the 
asset through the information of the indicators stored in the GIS data base. In Figure 5, an 
illustration is provided showing how a generic earthquake risk model in terms of a BPN has 
been formulated in terms of risk indicators. The BPN also includes decision nodes to 
facilitate optimal decision making in regard to possible strengthening of the existing 
structures. 

 
Figure 5: Generic indicator based BPN for the assessment of earthquake risks for one building class. 

 
In Figure 6, the results of a generic risk assessment performed using BPNs integrated in a 
GIS database are shown. The risk assessment results illustrated in Figure 6 strongly depend 
on the use of generic BPN based risk models and the efficient management of relevant data 
in the GIS data base. The number of assessed building structures is in the order of 
thousands, making the development and analysis of risks models for each individual building 
practically not possible. Besides providing a very efficient means for risk assessment, the 
use of BPNs in large scale risk assessment also facilitates a consistent modelling of the 
relevant dependencies between the parameters which influence the risk. In the case of 
earthquake risk assessment, this concerns, in particular, the dependency in earthquake 
excitation of different buildings, the dependency between damages of different buildings, 
dependency between liquefaction failures at different locations due to dependencies in soil 
properties. It is very important to include such dependencies in the risk modelling process 
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owing to their possibly significant influence on the results of the risk assessment. The use of 
BPNs readily allows for the inclusion of dependencies between the risk associated with 
different assets at different locations by use of common variables or nodes linking the 
individual networks together. 
 

 
Figure 6: Results of a risk assessment utilizing generic BPN risk models and GIS data bases.  

 
 
8.5 APPLICATION OF BPNS FOR TYPHOON RISK MANAGEMENT 

 
The application of BPNs for typhoon risk management in the North West Pacific region is 
illustrated in this section. Further details can be found in Faber et al. (2007b) and Graf et al. 
(2009). 

 
 

 

 

 

 

 

Figure 7: Bayesian modelling approach for typhoon risk management 

 

A probabilistic typhoon model is first established; the model consists of two parts – an 
exposure model and a vulnerability model. The exposure model describes the probabilistic 
nature of the entire lifetime of typhoons and associated wind fields from their occurrence to 
dissipation. The exposure model is composed of four sub-models – the occurrence model, 
transition model, wind field model and surface friction model. The vulnerability model 
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represents the probability distribution of the loss of individual exposures as a function of the 
wind speed. The modelling structure is illustrated in Figure 7. 
 
The occurrence model describes the probabilistic characteristics of the occurrence of 
typhoons as a function of location and season. The transition model describes the 
probabilistic characteristics of the movement of typhoons and the change of the intensity of 
typhoons. The wind field model describes the wind fields as a function of the relevant 
variables of the state of a typhoon. The surface friction model developed describes the 
relation between the wind speeds at gradient height and the wind speeds at nominal height 
on surface. The vulnerability model represents the probability distribution of the loss of 
individual exposures as a function of the wind speed.  
 
Figure 7 also illustrates the proposed Bayesian perspective for the risk management of 
typhoons. The Bayesian framework provides a viable platform on which the available as well 
as incoming information can be utilized to condition and update the models in a consistent 
and systematic manner. The BPNs developed for some of the constituent models are shown 
and briefly discussed in the following. 
 

 
Figure 8: BPN for the occurrence of typhoons. 

 
Figure 8 shows the BPN developed for the occurrence model. In the development of this 
model, the threshold for initiation of typhoon events is assumed to be defined by the moment 
at which the central pressure of each tropical storm becomes less than 1000 [hPa] for the 
first time in the lifetime of the tropical storm. Here, the probabilistic characteristics of the 
random variable ‘Occurrence’ are defined as a function of the states of the random variables 
‘SST’, ‘Latitude’ and ‘Longitude’, the probabilistic characteristics of the random variable ‘SST’ 
is defined as a function of the states of the variables ‘Latitude’, ‘Longitude’ and ‘Month’. The 
quantitative probabilistic dependencies of all the variables are estimated using historical 
data. 
 
The BPNs developed for the transition model and the wind field model are shown in Figure 9. 
The maximum wind speed during a typhoon event is taken as the indicator associated with 
the exposure. The transition model provides the conditional probabilities of the future states 
(6 hours later) of the central pressure and translation velocity, given the current states of the 
typhoon. The wind field model provides the probability of the wind speed at a target location 
using the states of the typhoons, which are obtained from the transition model. 
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Figure 9: BPNs for transition model and wind field model. 

 
Figure 10: Illustration of simulated typhoon tracks. 

 
Using these two models, the distribution of the maximum wind speed during one typhoon 
event is estimated. Some simulation results of the typhoon tracks are shown in Figure 10. 
 

 
Figure 11: Conditional probabilities of maximum wind speed. 

 
For further analysis, information about the central pressure, location and translation velocity 
of the typhoon is assumed to be available. Figure 11 (left) shows the time points at which this 
information is assumed to be obtained. The dotted line represents the realized typhoon track. 
Figure 11 (right) shows the calculated conditional probabilities of the maximum wind speed at 
Tokyo when the information becomes available at the three time points 1, 2 and 3 
respectively. 
 
The conditional probability of the maximum wind speed is seen to change according to the 
information available from time to time. As the typhoon approaches closer to the target 
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region, the precision of the indicator associated with exposure (represented by the maximum 
wind speed) becomes higher. In the context of risk management, the optimal decision time 
can then be obtained as a trade-off between this degree of precision and the time left for the 
mitigation actions. 
 
 
8.6 ROCKFALL RISK ASSESSMENT USING BPNS 

 
This section summarises the results from a study on rockfall risk assessment using BPNs. 
Further details can be obtained from Straub (2005) and Schubert et al. (2005). 
 
Several rock-fall hazard classification systems are currently used for the assessment of risks 
from rockfall on roads sections. These procedures are generally based on a series of 
indicators determined for specific sections of the considered road. As a function of these 
indicators, a rating is obtained; this becomes the basis for decisions on further actions. 
These classification systems provide a quick overview of the risk from rockfall on an entire 
road network. However, the basic concepts underlying the application of such classification 
systems are generally inconsistent with risk analysis because of their simplified format. For 
this reason, the use of BPNs is illustrated in order to consistently represent the influence of 
the indicators on the evolving risk. 
 
As an example, the classification system proposed in Budetta (2004), which is a modified 
version of the Rockfall Hazard Rating System (RHRS) developed at the Oregon State 
Highway Division, is considered. The following nine indicators or categories are applied in 
the classification process: 
 

 Slope height 
 Ditch effectiveness 
 Average vehicle risk (the traffic volume) 
 Decision sight distance 
 Roadway width 
 Slope mass ratio (A description of the geological character) 
 Block size / volume of rockfall per event 
 Annual rainfall and freezing periods 
 Observed rockfall frequency 

 
Each indicator is divided into four intervals and a score of 3, 9, 27 or 81 points is assigned to 
each of the indicators depending on its value. The total score, which represents the risk from 
a particular road section, is then obtained by adding the points for all the indicators. 
 
The above listed indicators are now implemented in a BPN, which serves to reflect the 
various causal relations between the indicators and the considered processes. The 
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developed BPN is of principally illustrative character designed to demonstrate the capabilities 
of BPN approach. Hence the modelled relations between the various variables are not 
exhaustive and the resulting probabilistic model may not be completely realistic. 
 

 
 
Figure 12: BPN for classification of rockfall hazard.  

 
The developed BPN is shown in Figure 12. The BPN is arranged in accordance with the 
generic system representation characterised by exposure, resistance and robustness. The 
dark coloured oval nodes represent the indicator variables, the white oval nodes are 
variables introduced to represent the causal relations in the system and the diamond shaped 
nodes are the utility functions, characterizing the consequences associated with the system. 
The utility nodes define the expected value of the costs as a function of the number of 
fatalities and injuries, the physical damage on the road, the duration of road closure and the 
normal average traffic volume. The utilities are expressed in monetary terms. The BPN 
model is utilized by entering the state of the indicators as evidence in the respective nodes. 
The resulting score, which corresponds to the expected utility (and consequently the risk), is 
then obtained by evaluating the updated probabilities of all nodes in the network. 
 
The developed BPN enables a detailed evaluation of the joint influence of the different 
indicators and the associated dependencies on the risk. It provides results which are 
consistent with the mathematical concept of risk and can hence be directly used for 
optimization purposes. The network can be further extended when additional investigations 
are performed and new information becomes available or when there is unavailability of 
information corresponding to certain indicator variables. 



Deliverable 1.5 
Statistical and empirical models for prediction of precipitation-induced landslides 
 
 

 
 
Grant Agreement No.: 226479  Page 138 of 159 
SafeLand - FP7 

8.7 REFERENCES 

 

Bayraktarli, Y.Y., Ulfkjaer, J.P., Yazgan, U. and Faber, M.H. (2005). On the Application of 
Bayesian Probabilistic Networks for Earthquake Risk Management. In: Augusti et al., eds. 
Safety and Reliability of Engineering Systems and Structures. Proceedings of the ICOSSAR 
2005, Rome. Rotterdam: Millpress, 3505-3512. 

Bayraktarli, Y.Y., Yazgan, U., Dazio, A. and Faber, M.H. (2006). Capabilities of the Bayesian 
probabilistic networks approach for earthquake risk management. In: Proceedings of ECEEs 
First European Conference on Earthquake Engineering and Seismology, September 3-8, 
Geneva, Switzerland. 

Budetta P. (2004). Assessment of rockfall risks along roads. Natural Hazards and Earth 
System Sciences, 4(1), 71-81. 

Faber, M.H., Ranamukhaarachchi, S.L. and Rego, L. (2005). Sustainable Management of 
Natural Hazards in the Region of South-East Asia and South Asia. In: Proceedings of the 
International Symposium on Disaster Reduction on Coasts. November 14-16, 2005, 
Melbourne, Australia. 

Faber, M.H., Maes, M., Baker, J.W., Vrouwenvelder T. and Takada, T. (2007a). Principles of 
risk assessment of engineering systems. In Kanda et al., eds. Applications of Statistics and 
Probability in Civil Engineering. Proceedings of ICASP10, Tokyo. The Netherlands: Taylor & 
Francis, 33-34. 

Faber, M.H., Bayraktarli, Y.Y. and Nishijima, K. (2007b). Recent developments in the 
management of risks due to large scale natural hazards. In: Proceedings of SMIS XVI. 
Mexican National Conference on Earthquake Engineering. November 1-4, 2007, Ixtapa, 
Guerrero, Mexico. 

Graf, M. et al., Nishijima, K. and Faber, M.H. (2009). A probabilistic typhoon model for the 
Northwest Pacific Region. In: Proceedings of the 7th Asia Pacific conference on Wind 
Engineering. November 8-12, Taiwan. 

JCSS (2008). Risk Assessment in Engineering : Principles, System Representation & Risk 
Criteria. Internet publication : www.jcss.ethz.ch. ISBN 978-3-909386-78-9. 

Jensen F.V. (2001). Bayesian Networks and Decision Graphs. Springer, New York. 

Nishijima, K. and Faber, M.H. (2007). A Bayesian framework for typhoon risk management. 
In: Proceedings of the 12th International Conference on Wind Engineering. July 1-6 2007, 
Cairns, Australia. pp. 1959-1966. 

Schubert, M., Straub, D. and Faber M.H. (2005). Reliability of rock fall protection galleries  a 
case study with a special focus on the uncertainty modelling. In: Augusti et al., eds. Safety 
and Reliability of Engineering Systems and Structures. Proceedings of the ICOSSAR 2005, 
Rome. Rotterdam: Millpress, 1333-1340. 



Deliverable 1.5 
Statistical and empirical models for prediction of precipitation-induced landslides 
 
 

 
 
Grant Agreement No.: 226479  Page 139 of 159 
SafeLand - FP7 

Straub, D. (2005). Natural hazards risk assessment using Bayesian networks. In: Augusti et 
al., eds. Safety and Reliability of Engineering Systems and Structures. Proceedings of the 
ICOSSAR 2005, Rome. Rotterdam: Millpress, 2535-2542. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Deliverable 1.5 
Statistical and empirical models for prediction of precipitation-induced landslides 
 
 

 
 
Grant Agreement No.: 226479  Page 140 of 159 
SafeLand - FP7 

9 APPENDIX B: WATER SUPPLY THRESHOLDS CRITICAL FOR 
DEBRIS FLOW INITIATION IN NORWAY DERIVED IN THE 
CONTEXT OF THE INFRARISK PROJECT 

 
9.1 SUMMARY 

In Norway, debris flows cause considerable damage on the national transport infrastructure 
each year. The extremely rapid and water-saturated mass movements are frequently triggered 
by extreme precipitation and/or rapid snow melt – the latter as trigger mechanism often 
excluded in existing analyses. In this study, the data on the actual water supply, provided by 
the Norwegian Water and Energy Directorate (NVE) and the Norwegian Meteorological 
Institute (met.no), were used to assess the threshold values. Compared to rainfall data, these 
data define the hydro-meteorological threshold conditions more accurately throughout the 
year - i.e. the debris flow triggering conditions due to snow accumulation in autumn and 
winter and snow melt in spring and summer. Two sets of intensity-duration (ID) threshold 
curves were derived by analyzing the data on 502 past debris flows distributed over mainland 
Norway. Each set comprises minimum, medium and maximum ID curves. One set consists of 
absolute threshold values, which are uniform over the entire country; for the other data set 
normalization was accomplished by using the local precipitation day normal (PDN) to 
account for regional differences in climate. While the absolute threshold curve consists of 
fixed intensity-duration values which are uniform over the entire country, the normalized 
thresholds show a strong spatial variability. Absolute threshold values range between 15 and 
107 mm/day, depending on duration and threshold level. In comparison, the normalized 
minimum threshold ranges between 6 and 63 mm/day, the medium threshold between 7 and 
131 mm/day and the maximum threshold between 12 and 250 mm/day for different locations 
and durations. Statistical analyses reveal that the set of normalized threshold values shows a 
better performance than the absolute thresholds. 
 
 
9.2 INTRODUCTION 

In Norway, road and railway closures, due to natural hazards induced by extreme weather, 
cause high economical losses each year (e.g., Bråthen et al. 2008). Occupants of vehicles 
passing through the affected routes at that time may also be at risk. The Norwegian Public 
Roads Administration (Statens Vegvesen) and the Norwegian National Rail Administration 
(Jernbaneverket) are therefore highly interested in assessing the risk of natural hazards 
affecting their transportation networks. 
 
The research project InfraRisk (http://www.ngi.no/en/prosjektnett/infrarisk) is concerned with 
this topic, focusing on the relationship between extreme weather events, natural hazards and 
transport infrastructure vulnerability in Norway. Rapid mass movements such as snow 
avalanches, rock falls and debris flows are often triggered by extreme weather events and 
cause considerable damage on the transport infrastructure. Thus, it is of central concern for 
the project to gather more knowledge about specific triggering conditions related to these 
events. Previous studies introduced thresholds that take practical advantage of the correlations 
between hazard initiation and meteorological triggering variable(s) for the purpose of early 
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warning. For snow avalanches Jaedicke and Bakkehøi (2007) introduced a framework which 
combines the amount of new snow with certain wind speeds over different durations. 
Furthermore, Sandersen et al. (1996) made a comparative study between debris flows and 
rock falls, and precipitation events related to their initiation. They concluded that debris flows 
show a closer relationship and a shorter response time regarding weather impacts than rock 
falls. However, the thresholds were merely based on the triggering variable precipitation and 
dismissed temperature as a factor thus excluding processes such as snow melt or freeze-thaw 
cycles. The measured amount of precipitation (accumulated as snow) can differ significantly 
from the actual amount of water that is released to the ground, and debris flows in spring 
often occur during periods of rapid snow melt.  
 
This study is based on a large sample of debris flow events documented over the past 50 
years. The goal is to define hydro-meteorological threshold conditions for debris flow 
initiation that include also the water supply from snow melt. 
 
 
9.3 DATASET 

All topographical analyses within this study are based on a Digital Elevation Model (DEM) 
with a 10 m x 10 m resolution, which is provided by the Norwegian Mapping Authority 
(Statens Kartverk). The actual threshold definition uses a comprehensive database with over 
600 debris flow events which recently became available as well as gridded data providing 
spatially continuous information on water supply for the entire country. Both data sets in 
combination give the unique opportunity to estimate critical initiation conditions.  
 
9.3.1 Gridded hydro-meteorological data 

The climate grids used in this study are provided by the Norwegian Meteorological Institute 
(met.no) and the Norwegian Water and Energy Directorate (NVE) and available on the 
internet portal www.SeNorge.com. They have a resolution of 1 km x 1 km and are produced 
on a daily basis for the time period since 1957 until today.  
 
The hydro-meteorological information related to debris flow events is extracted from a water 
supply grid which yields information about the actual release of water to the ground 
(including storage effects of snow fall and snow melt). The grid is computed from a 
combination of temperature and precipitation data, both recorded by national meteorological 
stations and corrected for elevation. Water supply information is the amount of available 
water, aggregated on one day and specified in millimetres [mm]. 
 
In addition, the precipitation day normal (PDN) calculated for the time period 1961-1990 is 
used for normalization issues. The PDN is the mean annual precipitation (MAP) divided by 
the average number of precipitation days per year (APD). PDN indicates the intensity of 
water supply throughout a year.    
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9.3.2 Slide database 

For Norway a slide database with almost 33 000 entries was compiled from slide records 
documented by the national road and railway authorities, as well as governmental and 
consulting organizations. The database is open to public and available on www.skrednett.no.  
Each slide event is stored as a point located at the area of deposition and contains information 
about the time of occurrence. Within the database approximately 700 events are specified as 
debris flows (flomskred) from which 648 events occurred in the time period 1976-2008 and 
have an event time accuracy of 30 minutes or less. However, 146 from the 648 recorded 
debris flows had to be discarded due to missing water supply information or low data quality. 
Hence, in total 502 debris flow events were finally available for further analyses. 
 
Since we were interested in the hydro-meteorological conditions that led to the initiation of 
debris flows, the documented points had to be relocated from the area of deposition to a 
potential source area. This was done by a simple GIS procedure illustrated in Fig. 1 (for 
further information see Meyer et al. submitted). The relocated events were used to extract 
water supply information for the day of the occurrence of the event until four weeks in 
advance of the debris flow. These data served as input for the threshold model. 
 
 
9.4 THRESHOLD MODEL 

Threshold models based on the analysis of conditions that triggered debris flows in the past 
usually define critical intensity-duration (ID) relationships for debris flow initiation. Power 
laws are most common to describe critical ID relationships as threshold curves which usually 
have the following form:  

(1) I = a*Db 
where I is the rain or water supply intensity, D is the duration, and a and b are parameters 
(Guzzetti et al. 2007).  
 
To account for the spatial variability in local climate the intensity is often normalized by the 
mean annual precipitation (MAP) or the precipitation day normal (PDN) (Cannon and Ellen 
1985, Wilson and Jayko 1997).  
 
To define a valid intensity-duration ID threshold the duration of the rainfall and/or snow melt 
event that triggered the documented debris flow has to be defined. From the water supply data 
extracted for four weeks in advance of each debris flow event, the maximum cumulative 
average intensity [mm/day] was chosen to represent the beginning of the triggering event 
(Table 1). The ID relationships used for threshold definition can thus be defined as 

(2) I = max(WSC/D)~D    
where WSC is the cumulative water supply in advance of the day of occurrence and D is the 
corresponding duration in days.  
 
Approximately 70% of the data consist of ID relationships with durations of one day and 90% 
feature water supply durations of less than seven days. In accordance to that, thresholds were 
established for water supply durations of one to seven days and should therefore also be 
applied within this time frame.  
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For this study three different threshold levels - minimum, medium and maximum – were 
defined in order to offer three levels of preparedness for implementation in an early warning 
system. 
 
So-called minimum ID thresholds are based on the assumption that debris flows can occur if a 
specific minimum rainfall/ water supply intensity is exceeded over a given duration. It thus 
indicates the lowest threshold level below which a process is very unlikely to occur (Guzzetti 
et al. 2007, Baum and Godt 2010). In addition, medium and maximum thresholds can be often 
defined simultaneously. They indicate the levels above which debris flows become very likely 
or almost always occur, respectively. 
 
 
9.5 CALIBRATION OF THRESHOLD 

Since there were several sources of uncertainty related to the data (for more detailed 
information see Meyer et al. submitted) and no data was available on non-triggering events it 
was decided to aim for a minimum threshold that captures 90% of the obtained ID 
relationships. In accordance to that the medium threshold was designed to capture 50%, and 
the maximum threshold 10% of the data, respectively. Minimum, medium and maximum 
threshold curves were drawn by executing quantile regressions along the 0.1, 0.5 and 0.9 
percentiles. 
 
9.5.1 Absolute ID threshold 

The obtained absolute ID thresholds can be described with the following equations: 
(1) IMIN =23.3 × Dday

-0.24 
(2) IMED=60.1 × Dday

-0.52 
(3) IMAX =107.2 × Dday

-0.57  
where IMIN is the minimum water supply intensity above which debris flow initiation becomes 
possible, IMED is the medium threshold level above which debris flows become very likely, 
IMAX is the maximum threshold level above which triggering of debris flows is seen as almost 
certain and Dday is the corresponding duration in days. All the intensities are expressed in 
mm/day. 
 
Fig. 2 shows the three threshold levels graphically. The negative exponent in all functions 
indicates that with increasing duration of water supply, the intensity needed to trigger debris 
flows decreases.  
 
9.5.2 Normalized ID threshold 

The obtained normalized ID thresholds represented in Fig. 3 can be described with the 
following equations: 

(1) IMIN =(2.18 × Dday
-0.24)*PDN 

(2) IMED=(4.51 × Dday
-0.51)*PDN 

(3) IMAX =(8.66 × Dday
-0.55)*PDN 
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where IMIN is the lowest threshold level of water supply intensity, IMED is the intermediate 
threshold level, IMAX is the highest threshold level, PDN is the precipitation day normal and 
Dday is the corresponding duration in days. All the intensities are expressed in mm/day. 
As the PDN changes locally also the threshold intensities show a spatial variation (Fig 4). 
Accordingly, intensities needed for debris flow initiation have to be considerably higher at the 
wet Norwegian west coast than those in the drier east of the country. Depending on location 
and considered duration, minimum threshold intensities range between 6 to 63 mm/day, 
medium threshold intensities between 7 to 131 mm/day and maximum threshold intensities 
between 12 to 250 mm/day. However, in areas with high PDN the variation of the thresholds 
is larger as in areas with a lower PDN. Thus, the local PDN has a stronger impact on 
threshold conditions in the former areas than in the latter. Compared to the absolute ID 
threshold introduced in this study the normalized threshold intensities are slightly lower in 
drier areas and remarkably higher in wet areas.   
 
 
9.6 COMPARISON WITH OTHER THRESHOLDS 

The minimum absolute threshold levels obtained in this study are in the range of other 
minimum ID thresholds found in literature (Fig. 5). Our absolute minimum threshold is lower 
than most of the other regional thresholds but compares well with thresholds obtained for 
temperate regions that are characterized by a high annual precipitation, e.g. western Canada 
and the north-western U.S. (Montgomery et al. 2000, Jakob and Weatherly 2003, Baum et al. 
2005). The level of our absolute minimum threshold is further supported by a local threshold 
obtained by Cepeda (2010) for a small catchment at the Norwegian west coast where 
17 mm/day is defined as the critical amount of rainfall (see Fig. 5a, triangle symbol).  Norway 
shows similarities to the climate of the above regions; it indicates that the critical amount of 
supplied water needed for debris flow initiation is in fact dependent on the common regional 
climate. Procedures to normalize for the local climate are thus justified.  
The minimum ID threshold normalized with the PDN is considerably lower than the two 
thresholds introduced by Guzzetti et al. (2007) for areas in central and southern Europe. This 
indicates that despite normalization significant differences remain between regions.    
However, a statistical sensitivity test of the spatial distribution of debris flow triggering events 
revealed that the normalized ID thresholds show a better performance than the absolute ID 
thresholds, in terms of a local reduction of the number of False and Missed Alarms, and a 
local increase of the number of Correct Alarms (for further information see Meyer et al. 
submitted).  
 
 
9.7 CONCLUDING REMARKS 

The study defines two sets of intensity-duration (ID) thresholds for debris flow initiation in 
Norway. The first set is based on absolute water supply intensities while in the second set 
these intensities are normalized by the precipitation day normal (PDN) to account for the local 
climate. Beside minimum ID thresholds also medium and maximum thresholds are defined. 
The main conclusions from this study are: 
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- All thresholds obtained in this study decrease with time. Thus, over longer durations 
lower water supply intensities are able to trigger debris flows than over shorter 
durations. 

- The defined absolute minimum thresholds are in the range of other minimum ID 
thresholds obtained for regions with a climate comparable to Norway. 

- The normalized minimum thresholds obtained in this study show a strong spatial 
variation over the country and are highest on the Norwegian west coast.     

- Statistical sensitivity analyses reveal that the normalized thresholds give better results 
than the absolute threshold and thus are recommended for further use.  
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9.8 TABLES 

Table 1: Individual series of water supply data prior to a debris flow event that occurred near Vang (central 
Norway) on 04.05.2008: The cumulative water supply [mm] and the cumulative average intensities [mm/day] 
are calculated for four weeks in advance of an event. The maximal cumulative average intensity (WSC/D) and 
the corresponding duration (D) (printed bold) form the ID relationship that is used as input for the threshold 
definition. 
 

Duration 
[day] 
(D) 

Water 
supply [mm] 

(WS) 

Cumulative water 
supply [mm] 

(WSC) 

 
Cumulative average 
intensity [mm/day] 

(WSC/D) 

1Event 13 13 13 

2 23 36 18 

3 33 69 23 

4 38 107 27 

5 21 128 26 

6 23 151 25 

7 20 171 24 

8 8 179 22 

9 0 179 20 

10 0 179 18 

[…] […] […] […] 

28 38 107 27 
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9.9 FIGURES 

 
 
Figure 1: Schematic illustration of the parameters used for the relocation of recorded debris flows from the 
deposition to a likely initiation area. 
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Figure 2: Absolute ID threshold curves for debris flow initiation obtained from the 3-day moving average drawn 
along the 0.1 percentile (minimum threshold), the 0.5 percentile (medium threshold) and the 0.9 percentile 
(maximum threshold) (n= 502). 
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Figure 3: ID threshold curves for debris flow initiation normalized with the precipitation day normal (PDN). The 
curves were drawn along the 3-day moving average of the 0.1 percentile (minimum threshold), the 0.5 percentile 
(medium threshold) and the 0.9 percentile (maximum threshold) (n= 502). 
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Figure 4: Spatial distribution of the debris flow triggering intensities after 1 day, 3 days and 7 days of water 
supply according to the normalized minimum, medium and maximum ID threshold. 
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Figure 5: The obtained absolute minimum threshold (a) and the obtained normalized minimum threshold (b) in 
comparison to a selection of other global, regional and local minimum ID thresholds. Note that durations are 
given in hours [hr].  
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10 APPENDIX C: PROBABILISTIC CLASSIFICATION OF 
THRESHOLDS FOR RAPID SOIL SLIDES IN NORWAY. 

10.1 INTRODUCTION 

This appendix summarizes the results of a research project presented in NGI (2012). The aim 
of this project was the probabilistic estimation of thresholds for triggering of rapid soil slides 
in Norway. A database of 281 landslide days for the period 2000-2011 was prepared with 
contributions from the Norwegian Water Resources and Energy Directorate - NVE, the 
Norwegian Public Roads Administration - SVV, Jernbaneverket and NGI reports. The 
database included also 15224 no-landslide days. Each event in the database was characterised 
by 18 different explanatory variables of meteorological and hydrological nature. Univariate 
and bivariate models were tested using the following classification methods: classification 
tree, linear and quadratic discriminant analyses, and Naïve-Bayes method. The performance 
of the models was tested using cross-validation and Receiver Operating Characteristic (ROC) 
analysis. The top ranked models were combinations of water supply and ground saturation. 
 
10.2 DATASETS 

The database comprised 281 landslide day-events and 15 924 no-landslide day-events in the 
period 2000-2011. Incidents in man-made slopes or not induced by water were excluded from 
the analyses. 
 
Considering the wide variation in meteorological, geomorphological, and lithological 
conditions over Norway, the following subsets were analysed: 

 Precipitation regions: regions 2, 6 & 8 (Østlandet and Vestlandet) See Fig. 1, and  
 New zonation proposed by NVE based on precipitation regions and geomorphology: 

regions 1a, 1b & 3 (Østlandet and Vestlandet) See Fig. 2. 
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Figure 1. Precipitation regions and complete inventory of soil slides and debris flows in 
Norway. Blue points (710 events) are debris flows and brown points (2904 events) are soil 
slides. More than 90% of these events are mapped  on the points were the landslide paths 
intersect the affected roads and railways. Considering the long runout and high height 
difference of most of these events, this poses a challenge for using the database for 
characterisation of release areas. 
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Figure 2. Location of the 281 landslide events used  for estimation of thresholds. Coloured 
regions are new zones proposed by NVE based on precipitation and geomorphology. Blue 
points: landslides triggered by short-duration precipitation/water supply. White points: 
landslides triggered by long-duration episodes of precipitation/water supply. 
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Each event in the database was characterised by 18 different explanatory variables of 
meteorological and hydrological nature grouped in the following categories (see Table 1): 

 Water supply (precipitation and snow melt) 
 Runoff 
 Groundwater  
 Ground saturation 

 
Table 1. Explanatory variables tested in the models. The values are extracted from a 1-km 
grid from  SeNorge and from the output of NVE’s hydrological models . 
 
Category  Variables  

Water supply 
(precipitation 
and snow melt)  

• 1-day precipitation  
• 1-day water supply (precip. + snow melt) 
• 3-day water supply  
• Normalised by annual precipitation, max. 30-year value, and 200-year 

return period  

Runoff  •  1-day runoff  
•  1-day runoff normalised by 30-year value  
•  Daily change of runoff  

Groundwater  •  Groundwater volume  
•  Normalised by max. 30-year value  
•  Daily change of groundwater  

Ground 
saturation  

•  Ground saturation  
•  Ground water capacity  

Other variables  •  Daily air temperature  
•  Frost depth  

 
 
10.3 THRESHOLD MODELS 

Two types of models were considered for the 18 different explanatory variables and the 6 
subdatasets: 

• Univariate (i.e., a threshold controlled by a single variable) 
• Bivariate  

•  Linear combination               

•  Quadratic combination          
 
The classification methods used were: 

•  Classification tree  
•  Linear Discriminant Analysis (LDA) 
•  Quadratic Discriminant Analysis (QDA) 
•  Naive-Bayes classification  

 
The performance of the threshold models was evaluated by: 
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• A 10-fold cross-validation error  (i.e., 10 random training and validation subsets) 
• Area under the ROC curve 

 
Considering the amount of analysed data (8 subsets, 18 univariate models, 153 bivariate 
combinations, and 4 classification methods – resulting in a total of 5040 models),  it was 
considered neccessary to further lump the performance of the models in order to facilitate 
comparison for the selection of the critical explanatory variables. A performance score (PS) 
for lumping the results of all models for a single combination of explanatory variables, such 
that: 

 



n

j

ijijiji AUCmerwPS
1

1  

 
Where, for the i-th set (combination of explanatory variables): 

PSi  : performance score 
For the j-th model: 

wij : priority weight (0wij1), 



n

j

ijw
1

1 

merij : cross-validation misclassification error rate 
AUCij : area under the ROC curve  

 
PS is within [0,1], 1 being the best performance. 
 
10.4 RESULTS 

The top 3 performances for each type of thresholds were: 
•  Univariate thresholds: 

• 1-day water supply normalised by the annual precipitation  
• 1-day water supply 
• 1-day water supply normalised by the 200-year return period event 

• Bivariate thresholds: 1-day water supply normalised by the annual 
precipitation vs: 

• Ground water capacity 
• Ground saturation 
• Groundwater volume normalised by the max. 30-year value 

 
The type of classification that yielded the best performance was the Naïve-Bayes 
classification. The method with the worst performance was the classification tree method. 
 
As an example of the results, Figure 3 presents a bivariate threshold with 1-day water supply 
normalised by the annual precipitation vs ground saturation using a Naïve-Bayes 
classification on the subdataset on region 3. 
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Figure 3. Results of Naïve-Bayes classification on the subdataset on region 3 (see Figure 2). 
(A) ROC curve. (B) Mapping between TPR, FPR and the Threshold values. (C) Dataset for 
Water supply vs. Ground saturation (blue – no landslides, red – landslides). Curves are 
constant threshold curves from 0.01 (left) to 0.99 (right). 
 
 
10.5 CONCLUDING REMARKS 

A database of 281 landslide day-events and 15 924 no-landslide day-events characterised by 
18 hydrometeorological variables was analysed using 5040 univariate and bivariate threshold 
models. The best  performance is for 1-day water supply combined with ground saturation 
parameters using the Naive-Bayes classification. The selection of threshold levels 
corresponding to warning levels can be based on the ROC curve of the model performance. 
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