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SUMMARY 
 
This deliverable report provides a review of the state-of-the-art in dealing with uncertainties 
in modelling, prediction, and decision-making. The different types and sources of 
uncertainties that are encountered in modelling, prediction and decision making are covered in 
Chapter 2 of this report. Chapter 3 gives generic guidelines for selecting the appropriate 
method for the treatment of uncertainties. The guidelines give information on which 
techniques can be used for the formulation of uncertainty for input parameters and which 
methods are applicable to propagate the uncertainty from input to output parameters. A brief 
review of the most relevant techniques and propagation methods is given in Chapter 4. 
Chapter 5 contains a description of methods to deal with uncertainty in decision making; here, 
focus in directed on the description of Bayesian decision methods and analysis. Finally, an 
example on the modelling and management of uncertainties associated with rockfall hazards 
following a Bayesian approach is provided in Chapter 6. 
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1 INTRODUCTION 

1.1 BACKGROUND 

Decision making under uncertainty is an essential aspect of risk management – the larger the 
uncertainty and the closer to critical, the greater the need for evaluating its effect(s) on the 
results and consequences. Estimates of risk are pervaded by significant uncertainty due to the 
uncertainty in data and indicators, and uncertainty in models which use data and indicators as 
inputs. Neglecting uncertainties could lead to an unsafe estimate of loss, thereby hindering the 
desired reduction of risk to acceptable levels, or to an overestimation of risk, resulting in un-
economic mitigation countermeasures. 
 
Traditionally, risk has been treated as a deterministic metric. Over the last years, however, the 
importance of handling uncertainty has been recognized, and the topic has received more 
attention.  
 
The purpose of this deliverable is to summarise the methods for treatment of uncertainties in 
the quantitative assessment of landslide risk, and in the decision-making process for landslide 
risk management. Uncertainty analysis pertains conceptually to both qualitative and 
quantitative perspectives and to all factors influencing the risk assessment and management 
process. Temporal and spatial variability should be addressed consistently in the context of 
uncertainty analysis. 
 
Key questions related to the treatment of uncertainty in risk assessment and management are: 
 

1. Which metric(s) should be used for risk quantification (expected casualties, monetary 
units, etc.)? 

2. Which indicators/parameters are more important in determining the risk level? 
3. How are the indicators described; as qualitative, semi-quantitative or quantitative 

parameters? 
4. Which uncertainty (and possibly: how large?) is associated with each indicator? 
5. What kind of models could be used for hazard, vulnerability and loss estimation: 

implicit or explicit? If explicit: Which models? 
6. Which uncertainties (and possibly: how large?) are associated with the hazard, 

vulnerability and loss model? 
7. Which model(s) for propagation of uncertainties could be used? 
8. How should the uncertainty in the estimated risk be accounted for in the decision 

making process? 
 
This deliverable aims to address the above questions. Key elements of the classification 
structure and model described in this report (Chapters 2, 3 and 4) are adopted from the EU 
project MOVE, where treatment of uncertainty was analysed for vulnerability assessment 
(MOVE, 2011).  
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1.2 TREATMENT AND ASSESSMENT OF UNCERTAINTY IN THE SAFELAND 
PROJECT 

Table 1.1 gives an overview of the key SafeLand work packages and deliverables which 
addresses uncertainty, either through the development or review of methodologies for the 
treatment of uncertainty or by assessing uncertainty for landslide relevant data or parameters. 

Table 1.1 Listing of deliverables and work packages that explicitly deal with treatment or 
assessment of uncertainty in SafeLand 

No. Title Responsible Delivery 
month 

D0.3 Dealing with uncertainties in modelling, prediction, and 
decision-making 
 

D0.3: ETHZ D0.3: 24 

WP1.2 Geomechanical analysis of weather-induced triggering 
processes:  
 “Analytical and numerical codes for analysis and 

prediction of rainfall induced landslides at small scale 
will be set up. This will include model developments 
and improvements, especially in the constitutive 
modelling area. The uncertainties and of the reliability 
of the prediction will be evaluated.” Reported in 
“D1.2 Geomechanical modelling of slope deformation 
and failure processes driven by climatic factors: 
Shallow landslides, deep landslides and debris flows“ 
and “D1.4 Guidelines for use of numerical codes for 
prediction of climate-induced landslides”. 

WP: AMRA 
D1.2: 
AMRA / ET 
HZ 
D1.4: EPFL 

 
D1.2: 12 
 
 
D1.4: 15 
 

WP1.3  Statistical studies of thresholds for precipitation-
induced landslides. Reported in “D1.5 Statistical and 
empirical models for prediction of precipitation-
induced landslides.” 

WP: ICG 
D1.5: ICG 

 
D1.5: 12 
 

WP2.2 Vulnerability to landslides.  
 “The proposed specific fragility functions and damage 

states for every element at risk will encompass and 
quantify various sources of uncertainties, related to the 
temporal probability and the probability of spatial 
impact of a specific slope failure or rock fall, for every 
element at risk. There are various sources of 
uncertainties (natural or random, epistemic, site 
characterization, mathematical or model and others). 
The fragility functions that will be proposed will 
consider most of these uncertainties quantified 
through probability distribution functions.” 

 “Task 3: Definition of the fragility functions and 
damage states for every element at risk considering 
various uncertainties” Reported in “D2.5 Physical 
vulnerability of elements at risk to landslides: 

WP: AUTH 
D2.5: 
AUTH 

 
D2.5: 18 
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Methodology for evaluation, fragility curves and 
damage states for buildings and lifelines.” 

WP2.3 Development of procedures for QRA at regional scale and 
European scale 
 Task 4. Validation of QRA schemes and zoning maps: 

“The uncertainty in QRA and zoning will be assessed 
by analysis of the uncertainty of the risk components” 
Reported in “D2.9 – Toolbox for landslide 
quantitative risk assessment” 

WP:  
D2.9: UPC 

 
D2.9: 30 

WP3.1 Climate change scenarios for selected regions in Europe 
 “These experiments will allow for a detailed statistical 

investigation of possible changes in frequency and 
intensity of future extreme weather events as well as 
for an estimation of uncertainty in these projected 
changes.” Synthesised in “D3.4 – Report on projected 
changes in meteorological extreme events in Europe 
with a focus on Southern Italy, the Alps, Southern 
Norway, and Romania: synthesis of results.” 

WP: MPG 
D3.4: MPG 

 
D3.4: 32 

WP3.3 Landslide hazard evolution in Europe and risk evolution 
in selected "hotspot" areas 
 In the activity “Propagating uncertainties into new 

updated hazard and risk maps”...”[a] new method, 
based on a possibilistic approach will be developed. It 
will permit the assessment of uncertainties inherent to 
a scenario modelling approach.” Reported in “D3.9 – 
Methodology for predicting the changes in the 
landslide risk during the next 100 years at selected 
sites in Europe. Changing pattern of landslide risk in 
hotspot and evolution trends Europe according to 
global change scenarios.” 

WP: BRGM 
D3.9: 
BRGM / 
ETHZ 

 
D3.9: 32 

WP4.1 Short-term weather forecasting for shallow landslide 
prediction 
 Task 3 on “Development and testing of models for 

infiltration and stability in shallow slopes”: “Further 
developments will regard the integration in the model 
of the soil moisture monitoring data at different scales 
(from slope parcels, using in situ monitoring 
instrumentation, to large area using remote sensing 
data), the improvement of the soil saturation 
component, statistical treatment of the input 
parameters to reduce uncertainty and revision of the 
infinite slope approach.” Reported in “D4.2 – Short-
term weather forecasting for prediction of triggering 
of shallow landslides – Methodology, evaluation of 
technology and validation at selected test sites” 

WP: CMCC 
D4.2: 
UNIFI-ICL 

 
D4.2: 12 

WP5.1 Toolbox for landslide hazard and risk mitigation measures WP: ICG  
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 “The toolbox will include technical specifications or 
policy prescriptions (how to), document, with 
hindsight, the experience and effectiveness of the 
approach (do's and don'ts), and estimate the costs, 
benefits, hazards and vulnerability associated with 
each measure, including uncertainties.” 

 Task 4 on: “The uncertainty-based (i.e. probabilistic) 
analyses will interact closely with the other WP’s. The 
research will generate probabilistic estimates of 
landslide risks and analyse the costs and benefits of 
structural and non-structural mitigation measures. The 
measures will take into account future land-use and 
climate change, including spatial and temporal factors. 
The innovation of this task is to demonstrate a 
methodology for carrying out a probabilistic (future 
oriented) cost-benefit analysis of mitigation options. 
Emphasis will be placed on documenting the 
uncertainty bounds required for the analyses.” 
Reported in “D5.4 Quantification of uncertainties in 
the risk assessment and management process” 

D5.4: 
ETHZ/ICG 

D5.4: 24 

 
A short summary and extract of the work involving the treatment and analysis of uncertainties 
in the some of the completed deliverables listed in Table 1.1 is provided below. 
 
In deliverable D1.5 (Statistical and empirical models for prediction of precipitation-induced 
landslides), a procedure has been proposed for incorporating uncertainty in time (or date) of 
occurrence in the estimation of thresholds. This has also been applied to a study area in 
South-Eastern Norway. This procedure allows to incorporate all events in an inventory, 
regardless of their uncertainty in the time (or date) of occurrence. The procedure has 
significance when it is assumed that the time uncertainty is inversely proportional to the 
magnitude of the landslide. 
 
Deliverable D2.5 has reported on the work carried out on the proposition and quantification, 
in a measurable and reproducible way, of efficient methodologies for assessing the physical 
vulnerability of buildings (or sets of buildings) and lifelines exposed to different landslide 
hazards. The applicability of the developed methodologies varies in relation to the landslide 
type, specified elements at risk and the analysis scale and the triggering mechanism. The 
structural vulnerability of the affected facilities is estimated using the concept of probabilistic 
fragility functions and appropriate definition of relevant damage states including various 
sources of uncertainty. The determination of an appropriate statistical distribution is of major 
importance to account for the various sources of uncertainty. 
 
Deliverable D4.2 looks at short-term weather forecasting for prediction of triggering of 
shallow landslides; the methodology, evaluation of technology and validation at selected test 
sites are described. Three principal motivations for the uncertainty of the numerical weather 
forecast have been identified:  
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 Analysis error: errors in the background fields, observation data and data assimilation 
techniques used. 

 Model uncertainty: inadequacy of physical model processes 
 Atmosphere chaotic nature: the atmospheric motions follow non-linear dynamic, small 

errors in the analysis may quickly be amplified. This is commonly referred to as the 
"butterfly effect".  

 
In order to quantify the underlying uncertainties, the probabilistic forecasts generating more 
predictions beginning from very similar initial states are defined. The generated predictions 
are usually sorted into groups (clusters); depending from the number of prediction that fall in 
the same clusters it is possible to associate a probability of occurrence to a certain forecast 
(Ensemble Prediction System).  
 
It is stated that different approaches exist for the problems of numerical weather prediction: 

 Deterministic approach: it postulates that, at least over a certain time period, the laws 
of physics, as applied to the atmosphere, cam be solved (integrated forward in time) to 
find the forecast fields given initial data describing the current conditions.  

 Probabilistic approach: it is based on the idea of starting a set of forecast integrations 
from slightly different initial conditions, reflecting the range of uncertainty in the 
estimated initial state. This ensemble approach allows a probability to be assigned to 
the likelihood of rainfall (for example). 

 
Further specific details on these as well as the other deliverables looking at uncertainty issues 
in the SafeLand project can be found in the respective deliverables. 
 
 
1.3 STRUCTURE OF THIS DELIVERABLE  

The different types and sources of uncertainties that are encountered in modelling, prediction 
and decision making are covered in Chapter 2 of this report. Chapter 3 gives generic 
guidelines for selecting the appropriate method for the treatment of uncertainties. The 
guidelines give information on which techniques can be used for the formulation of 
uncertainty for input parameters and which methods are applicable to propagate the 
uncertainty from input to output parameters. A brief review of the most relevant techniques 
and propagation methods is given in Chapter 4. Chapter 5 contains a description of methods 
to deal with uncertainty in decision making; here, focus in directed on the description of 
Bayesian decision methods and analysis. Finally, an example on the modelling and 
management of uncertainties associated with rockfall hazards following a Bayesian approach 
is provided in Chapter 6. 
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2 SOURCES AND TYPES OF UNCERTAINTIES 

Uncertainty can be analysed and categorised in many different ways (Apostolakis, 1990, 
Helton and Burmaster, 1996). One possible categorisation is to classify the uncertainty into 
aleatory uncertainty and epistemic uncertainty. Aleatory uncertainty parameterizes the 
inherent, “real” variability of the physical environment and represents the natural randomness 
of a variable. Examples of aleatory uncertainty are the spatial variation of a soil parameter 
within a nominally uniform geological layer, the temporal variation in the peak acceleration 
of a design earthquake with a given return period, the variation in the ocean wave height or 
wind force, and so on. The aleatory uncertainty, which is also called the inherent uncertainty, 
cannot be reduced or eliminated. Epistemic uncertainty, on the other hand, represents the 
uncertainty due to lack of knowledge on a variable. Epistemic uncertainty includes 
measurement uncertainty, statistical uncertainty (due to limited information), and model 
uncertainty. Statistical uncertainty is due to limited information such as limited number of 
observations.  Measurement uncertainty is due to for example imperfections of an instrument 
or of a method to register a quantity. Model uncertainty is due to idealizations made in the 
physical formulation of the problem. Epistemic uncertainty is “artificial” and can be reduced, 
perhaps even eliminated, by collecting more data and information, improving the 
measurement method(s) or improving the calculation method(s).   
 
A second possible categorisation refers to the method of uncertainty modelling. Objective 
quantification of uncertainty is based on processing (e.g. by statistical and probabilistic 
methods) of available data for indicators. Subjective modelling relies on the analyst’s 
experience (expert judgement), prior information, belief, necessity or, more frequently, a 
combination thereof.  
 
A third possible categorisation of uncertainties refers to at which stage in the risk estimation 
process they are located, i.e. in the input parameters to the models (parameter uncertainty) or 
in the models (transformation uncertainty) which in turn determine the uncertainty of the 
output parameters. In general, parameter uncertainty is partly aleatory and partly epistemic. 
Transformation uncertainty is due to the approximations and simplifications inherent in 
empirical, semi-empirical, experimental or theoretical models used to relate model inputs to 
model outputs. It is essentially epistemic in nature. 
 
In Figure 2.1 the classification system from MOVE (2011) is shown. It is based on the third 
categorisation above. A risk assessment method will be characterised by the path it follows 
through the three process stages defined in Figure 2.1: (1) inputs, (2) models/procedures and 
(3) outputs. The path followed may be iterative. Many explicit methods contains for example 
data that have been derived through implicit methods/expert judgement. 
 
Inputs can be classified as qualitative, categorical or quantitative according to the following 
description: 
 Qualitative: magnitude of parameters described verbally; no numerical categorical or 

quantitative value associated with verbal description 
 Categorical: magnitude of parameters expressed on a quantitative, purposely defined 

ordinal scale 
 Quantitative: magnitude of parameters expressed on a quantitative, measurable scale 
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Models / procedures can be classified as implicit or explicit according to the following 
description: 
 Implicit: Aggregation of inputs occurs subjectively, based on expert judgment 
 Explicit: Aggregation of inputs relies on repeatable criteria, algorithms, models or 

formulae 
 
Outputs can be classified as qualitative, categorical or quantitative according to the following 
description: 
 Qualitative: magnitude of outputs described verbally; no numerical categorical or 

quantitative value associated with verbal description 
 Categorical: outputs are expressed on a quantitative, purposely defined ordinal scale 
 Quantitative: magnitude of outputs is expressed on a quantitative scale 
 

 

Figure 2.1 Proposed classification system for treatment of uncertainty in risk estimation 
(Source: MOVE, 2011). 
 
The type of output data depend on the type of input data and choice of method. For instance a 
methodology may be based on quantitative inputs, but through the use of an explicit 
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procedure end up with categorical or semi-quantitative outputs. Another approach may be 
based on qualitative inputs but through an implicit procedure, quantitative outputs can be 
produced. 
 
The appropriate method for treatment of uncertainty will depend on which path the risk 
estimation method takes through the diagram in Figure 2.1, i.e. which combination of data 
type and method. 
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3 FORMULATION OF UNCERTAINTY IN INPUT PARAMETERS 

This chapter briefly describes the various methods for formulating uncertainty in terms of 
qualitative and quantitative parameters. The presentation is adapted from MOVE (2011). 
 
3.1 QUALITATIVE PARAMETERS 

Qualitative parameters could be easily distinguished from quantitative parameters by arguing 
that every parameter that could be expressed as a number or value is a quantitative parameter 
everything else is qualitative (Stegmüller 1970). In order to obtain relevant qualitative input 
parameters a systematic measurement method is needed. Therefore transforming qualitative 
parameters to semi-quantitative parameters with nominal scales such as yes/no, good/bad or a 
ranking scale could be very useful. Although qualitative parameters are used as the outcome 
of the nominal scale these could still be analyzed quantitatively (Mayring 2007).These 
qualitative parameters could be derived through expert judgment, elicited either through 
individual interviews, interactive groups, or Delphi situations. 
 
3.1.1 Semi-quantitative data - Possibility theory 

Transforming a quantitative parameter into a semi-quantitative parameter may be useful in 
some cases. Instead of expressing risk in terms of probabilities, formulating the results from a 
risk assessment into categories, for instance “low”, “medium” and “high” risk may ease 
communication and help decision makers prioritize and target risk mitigation measures. 
Another situation where categorization of quantitative parameters may be appropriate is when 
significant uncertainty is associated with the quantitative parameter and expressing the 
parameter with a precise numerical value may convey a false message of high precision. Such 
uncertainty may stem from incomplete knowledge and imprecision due to lack of information 
resulting, for example, from systematic measurement errors or expert opinions (Baudrit and 
Dubois, 2006). 
 
To transform a quantitative parameter into a semi-quantitative/categorical parameter, 
possibility theory can be applied. An expert commonly estimates the numerical values of a 
parameter using confidence intervals according to his/her experience and intuition. The 
interval is defined by a lower and an upper bound. In most cases, experts may provide more 
information by expressing preferences inside this interval. For example, “an expert is certain 
that the value for the model parameter is located within the interval [a, b]”. However, 
according to a measurements and experience, the expert may be able to judge that “the value 
for the model parameter is most likely to be within a narrower interval [c, d]”. To represent 
such information, an appropriate tool is the possibility distribution, based on the Fuzzy set 
theory (Zadeh 1965), which describes the more or less plausible values of some uncertain 
quantity (Dubois and Prade 1988). The preference of the expert is modelled by a degree of 
possibility (i.e. likelihood) ranging from 0 to 1. In practice, the most likely interval [c, d] 
(referred to as the "core") is assigned a degree of possibility equal to one, whereas the 
“certain” interval [a, b] (referred to as the "support") is assigned a degree of possibility zero, 
such that values located outside this interval are considered impossible. Figure 3.1 illustrates 
such an approach in the field of earthquake hazard assessment. 
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Figure 3.1 Definition of the possibility distribution representing the uncertainty of the 
lithological amplification factor for the seismic hazard assessment at the local scale (i.e. site 
effect). The « Core » is {1.2}, The Support is [0.8-1.6] and the confidence interval at 50 % is 
represented by the 0.5-cut (adapted from Rohmer, 2007). 
 
 
3.2 QUANTITATIVE PARAMETERS 

Quantitative parameters can be expressed as an expected value, together with some measure 
of the uncertainty/spread of the data (for example standard deviation or coefficient of 
variation) or as a full probability density function. To select a distribution type for the 
probability density function, the properties of samples of a random variable must be 
consistent with the definition and attributes of the variable itself. The selection of a 
probability distribution to suitably represent a random variable can be made, for instance, 
using the principle of maximum entropy.  
 
Table 3.1 provides an example of the various criteria and constraints which may be used in 
selecting a probability distribution using the maximum entropy principle. For example, if only 
the mean and the standard deviation of a random variable are known, and negative values are 
not acceptable even for small probability levels, a lognormal distribution should be selected. 
If, for instance, the minimum, maximum, mean value and standard deviation of a random 
variable are known, the probability distribution to be adopted is a Pearson type-I beta 
distribution. 
 

Table 3.1 Maximum-entropy criteria and constraints for the selection of a probability 
distribution (Source: MOVE, 2011) 
 
mean mode variance negative 

values 
Lower bound Upper bound maximum entropy 

distribution 
N N N Y Y Y Uniform 
Y N Y Y N N Normal 
Y N Y N Y N Lognormal 
Y N Y Y Y Y type-I beta 
N Y N Y Y Y PERT, triangular 

 



Deliverable D0.3 Rev. No: 2 
Dealing with uncertainties in modelling, prediction, and decision-making Date: 2011-08-02 
 
 
 

 
 
Grant Agreement No.: 226479  Page 15 of 69 
SafeLand - FP7 

4 TREATMENT OF PROPAGATION OF UNCERTAINTIES 

When using input data associated with uncertainties in a risk assessment model (either 
implicit or explicit as described in Figure 2.1) the uncertainties propagate through the model 
and influence the output. There are several different methods for characterizing or quantifying 
the effect of uncertainties in the input on the resulting expected value and uncertainties in the 
output. This chapter is partly adapted from MOVE (2011) and summarizes the most used 
methods. 
 
Some of the uncertainty propagation methods described in this section are flexible in terms of 
which type of input data they can handle; either qualitative, semi-quantitative or quantitative 
data. However, most methods are designed to process certain types of data. Expert judgment 
and Qualitative scenario analysis are mostly used for qualitative data. The NUSAP 
(Numerical, Unit, Spread, Assessment and Pedigree) method, Hybrid methods and Fuzzy 
logic are often used to treat semi-quantitative data. Bayesian theory, Monte Carlo Simulation 
(MCS), First Order Second Moment approximation (FOSM), Point Estimation Methods 
(PEM) and First Order Reliability Method (FORM) are most often used in connection with 
quantitative data. 
 
4.1 IMPLICIT METHODS 

4.1.1 Expert judgment 

Expert judgments are the expressions of informed opinion, based on knowledge and 
experience that experts make in responding to technical problems (Booker & Meyer, 2001). 
Booker & Meyer (2001) define an expert as an individual who has background in the subject 
area and is recognized by peers as having the necessary qualifications to address the technical 
problem. Judgements, according to Otway and Winterfeld (1992), are inferences or 
evaluations that go beyond obvious statements of fact, data, or the conventions of a discipline. 
Instead, factual judgments are beliefs or opinions about propositions that can, in principle, be 
proven right or wrong. Value judgments are expressions of preferences between alternatives, 
based on tradeoffs and priorities. The process of gathering information from experts is expert 
elicitation. It is a structured process to elicit subjective judgments and ideas from experts. It 
seeks to make explicit and utilizable the unpublished knowledge and wisdom in the heads of 
experts, based on their experience and expertise, including their insight in the limitations, 
strengths and weaknesses of the published knowledge and available data (Refsgaard et al 
2006).  
 
Expert judgement can be the result either of informal or formal processes. Informal processes 
are implicit, unstructured and undocumented. According to Otway and Winterfeld (1992), 
expert judgement processes have always entered analysis through the experts’ implicit and 
undocumented reasoning, inferences, scientific conventions or even unconscious processes. 
Examples for such informal judgements are about the identification of:  

 the problems that need to be analysed; 
 the kind of models should be used; 
 the kind of data should be used; 
 how should results be interpreted; 
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 the actions to be recommended. 
 
In contrast, formal uses of Expert judgment are explicit and documented. They involve a 
deliberate attempt to bring out the assumptions and reasoning underlying a judgment, to 
quantify it to the extent useful and to document it so that it can be appraised by others. The 
following steps describe the process of formal Expert judgment elicitation (adapted from 
Otway and Winterfeld, 1992): 
 

1. identify and select the events and options about which fact or value judgements should 
be made formally; 

2. identify and select the experts who will make the judgments; 
3. define the issues for which judgments are to be elicited and identify the relevant 

experts in the fields; 
4. train the experts to the rules of the methodology for the elicitation of formal judgments 

(i.e. elicitation methods, decomposition approaches, bias identification and debiasing 
technique); 

5. elicit the Expert judgments in interviews with a trained facilitator, who poses 
questions to properly separate the main problem in sub-problems to be discussed, to 
elicit judgments (through for instance a brainstorming session), and to cross-check 
result against other forms of judgement; 

6. analyse and aggregate results obtained from individual experts and, in the case of 
substantial disagreements, attempt to resolve differences; 

7. completely document results, including the reasoning given by the experts to support 
their judgement. 

 
In addition, expert judgement can be elicited simply through one-on-one, individual 
interviews, or through the use of interactive groups where experts and a moderator meet face 
to face to give and discuss their data in either a structured or informal manner. In order to 
avoid the possible negative effects of group interaction (biasing effects such as when the 
presence of a dominant expert causes others in the group to agree to a judgement they do not 
hold), the Delphi technique can be applied to minimize bias and maintain anonymity. Under 
this process a group of experts, in isolation from each other, give their judgements to the 
moderator. The moderator makes these judgements anonymous, collates them, then and 
redistributes them to the experts in order for them to revise their previous judgement. This 
process can be repeated until consensus (if it is required) or a more refined set of data is 
achieved. The continuously iterative process reduces the risk of uncertainties while limiting 
inter-expert bias. 
 
Furthermore, according to Booker & Meyer (2001) Expert judgment can be used for statistical 
applications such as: 
 

 the probability of an occurrence of an event; 
 a prediction of the performance of some product or process; 
 the decision about what variables enter into a statistical analysis; 
 the decision about which data sets to include in an analysis; 
 the assumptions used in selecting a model; 
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 the decision concerning which probability distributions are appropriate to use; 
 a description of experts’ thinking and information sources in arriving at any of the 

above responses. 
 
Expert judgment can be expressed in three forms: 
 

 quantitative form—probabilities such as ratings, odds, uncertainty estimates, 
weighting factors, and physical quantities of interest (e.g., costs, time, length, weight, 
etc.), 

 semi-quantitative form—categorisation/classification of expert judgment 
opinion/beliefs or 

 qualitative form—a textual description of the expert’s assumptions in reaching an 
estimate, reasons for selecting or eliminating certain data or information from 
analysis, and natural language statements of physical quantities of interest.  

 
There are also named some drawbacks of the expert judgement method. The Expert judgment 
itself has uncertainty. However, this can be characterized and subsequently analyzed.  
 
The major problem in Expert elicitation is expert bias. Expert judgement is affected by the 
process of gathering it. Experts and lay people alike are subject to a variety of potential 
mental errors or shortcomings caused by man’s simplified and partly subconscious 
information processing strategies. It is important to distinguish these so-called cognitive 
biases from other sources of bias, such as cultural bias, organizational bias, or bias resulting 
from one’s own self-interest (Heuer, 1999). Some of the sources of cognitive bias are as 
follows: overconfidence, anchoring, availability, representativeness, satisficing, unstated 
assumptions, coherence. Experts should be informed on the existence of these biases during 
the Expert elicitation process. Gigerenzer (1991,1994) and Cosmides and Tooby (1996) argue 
that part of these biases are not so much caused by the limited cognitive abilities of the human 
mind, but more by the way in which information is presented or elicited. A thoughtful 
wording of questions can be helpful to avoid part of these biases. Performing dry run 
exercises (try-outs) can render important feedback on the suitability of the posed questions.   
 
Many experts are accustomed to giving uncertainty estimates in the form of simple ranges of 
values. In eliciting uncertainties, the analysts can make experts aware of their natural 
tendency to underestimate uncertainty, such as through the exercise of estimating on sample 
problems. Studies have shown that experts are typically unable to completely overcome this 
tendency (Booker & Meyer, 2001). Several elicitation protocols have been developed whereas 
the Stanford/SRI Protocol is the most commonly used. For detailed information please see 
Spetzler and von Holstein (1975), Merkhofer (1987) and Morgan and Henrion (1990). 
Another protocol which can be used is from Cooke & Goossens (2000 a, b), adapted by Van 
der Fels-Klerx et al (2002). The authors of the reviewed literature emphasised that there is not 
a preferable method, and in practise it is recommended to use a mix of both methods, 
depending on the availability and quality of data and information.  
 
In addition, to perform a formal Expert elicitation is a time and resource intensive activity. 
The whole process of setting up a study, selecting experts, preparing elicitation questions, 
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expert training, expert meetings, interviews, analyses, writing rationales, documentation (as 
described above) can easily stretch over months or years. 
 
Furthermore should be pointed out that the Expert judgement can be viewed as a snapshot of 
the expert’s state of knowledge at a specific time; hence this judgement could change over 
time due to the fact that the expert could receive new information. In addition, because the 
judgment reflects the expert’s knowledge and learning, the experts can validly differ in their 
judgments. 
 
4.1.2 Qualitative scenarios analysis 

There exist in the literature many definitions of what a scenario is. A general definition is: 
“scenarios are descriptions of possible futures that reflect different perspectives on the past, 
the present and the future (van-Notten & Rotmans 2001) cited in (van-Notten et al 2003)”. In 
the context of sustainability science, scenarios are coherent and plausible stories, told in 
words and numbers, about the possible co-evolutionary pathways of combined human and 
environmental systems (Swart et al 2004). Scenarios generally include: a definition of 
problem boundaries, a characterisation of current conditions and drivers of change and the 
identification of uncertainties (Swart et al 2004). 
 
Scenario analysis is a common approach used when only partial information, or no 
information at all, is available. Thus it is meant to deal with uncertainty and support strategic 
decision making. The uncertainty about parameters or components of the system is addressed 
through the description of a small number of “sub-problems” derived from an underlying 
optimization problem. The idea is that, by describing and studying the different “sub-
problems” and their optimal solutions, similarities and trends may eventually be identified 
and uncertainty reduced. An optimal solution to the underlying problem may then be 
suggested. Qualitative scenario analysis is used to stimulate brainstorming, through experts 
workshops, about an issue, when many views about the future have to be included or when an 
idea has to be formed about, for example, general social and cultural trends (Sluijs et al 2004). 
Hodgson (1992) proposed the “scenario-thinking” concept, which is useful for gathering a 
wide variety of perspectives from actors and develop storylines. It makes use of visual 
facilitation tools, in particular hexagons, as a flexible mapping technique to bridge the gap 
between thoughts and models (Giupponi et al 2006). Other type of scenarios are benchmark 
scenarios, policy scenarios or exploratory, anticipatory scenarios (Sluijs et al 2004). 
Quantitative scenario analysis is also used to for assessments that require data and numbers 
(Sluijs et al 2004).  
 
4.1.3 Numerical, unit, Spread, assessment and pedigree (NUSAP) 

NUSAP is a notational system proposed by Funtowicz and Ravetz (1990), which aims to 
provide an analysis and diagnosis of uncertainty in science for policy. It captures both 
quantitative and qualitative dimensions of uncertainty and enables one to display these in a 
standardized and self-explanatory way. It promotes criticism by clients and users of all sorts, 
experts as well as lay public, and will thereby support extended peer review processes. 
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The NUSAP method is based on five categories, which generally reflect the standard practice 
of experimental sciences. By providing a separate box, or "field", for each aspect of the 
information, it enables a great flexibility in their expression. The name "NUSAP" is an 
acronym for the categories. The first, “Numeral”, will usually be an ordinary number; but 
when appropriate it can be a more general quantity, such as the expression "a million" (which 
is not the same as the number lying between 999,999 and 1,000,001). The second is “Unit”, 
which may be of the conventional sort, but which may also contain extra information, as the 
date at which the unit is evaluated. The third category is “Spread”, which generalizes from the 
"random error" of experiments or the "variance" of statistics. Although “Spread” is usually 
expressed by a number (either + , % or "factor of") it is not an ordinary quantity, for its own 
inexactness is not of the same sort as that of measurements. The next letter A for 
“Assessment” leads us to the more qualitative side of the NUSAP method where the Expert 
elicitation is an appropriate method for. Finally the P for “Pedigree”, it expresses an 
evaluation account of the production process of information, and indicates different aspects of 
the underpinning and scientific status of knowledge used (Sluijs et al 2004). In order to assess 
these different aspects a set of pedigree criteria is used like for example proxy representation, 
empirical basis, methodological rigor, theoretical understanding and validation. The 
assessment of pedigree also includes qualitative Experts judgment. To minimise arbitrariness 
and subjectivity in measuring strength, a pedigree matrix is used to code qualitative Expert 
judgements for each criterion into a discrete numeral scale from 0 (weak) to 4 (strong) with 
linguistic descriptions (modes) of each level on the scale (Refsggaard et al., 2006).  
 
4.1.4 Fuzzy logic 

Fuzzy logic was introduced by Lofti Zadeh in 1965. The method concentrates on solving 
specific problems rather than trying to model a whole system. It is a multi-valued logic, which 
introduces fuzzy sets in addition to crisp sets. In crisp sets elements either belong to a set or 
not. Fuzzy sets allow elements to belong to a set to a certain degree. Therefore fuzzy logic 
allows one to integrate imprecise approximations and semantic notions such as high / medium 
/ low into mathematical formulations and computer models. 
 
The first step in a fuzzy logic system is called fuzzyfication: for each input parameter a degree 
of membership is assigned for linguistic values by the membership function of the fuzzy set. 
Based on expert knowledge the second step connects the fuzzy set with logic rules for the 
linguistic values. Also preconditions of the fuzzy sets have to be applied to the linguistic 
values depending on the actions of the logic rules. This is called inference. In most cases there 
is more than one logic rule applied to linguistic values in rule systems. Therefore membership 
functions of the actions have to be combined after inference building into a generic 
membership function. This is called composition. Table 4.1 shows the logic rules for the 
example of SAR remote sensing data by Hellmann (2001). The last step in a fuzzy rule 
system is called defuzzyfication. It derives an output parameter from the generic membership 
function Reif (2000). Figure 4.1 shows an example by Hellmann (2001) for the classification 
of SAR remote Sensing data. 
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Figure 4.1 Fuzzy classification scheme for an SAR remote Sensing data example by Hellmann 
(2001). 
 

Table 4.1 Classification rules for a SAR remote sensing data example by Hellmann (2001) 

1 H  Decision 

very high medium   urban 

high or very high very low medium/high urban 

high high   forest 

medium high medium/high forest 

medium medium medium/low vegetation 

medium low or very low low vegetation 

(very) low     runway 
 

 
In general, the employment of fuzzy logic might be helpful for very complex processes, when 
there is missing data or high uncertainties, when no simple mathematical model exists, for 
highly nonlinear processes or for the processing of linguistically formulated expert 
knowledge. 
 
The difficulty of the fuzzy approach lies in the requirement of sufficient expert knowledge for 
the combination of the sets, the combination of the fuzzy rule base and the defuzzyfication. 
Fuzzy logic is not recommendable, if expert knowledge is lacking, a conventional approach 
yields a satisfying result or an alternative easily solvable and adequate mathematical model 
already exists; Hellmann (2001). 
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4.2 EXPLICIT METHODS 

4.2.1 Monte Carlo simulation (MCS) 

The term “Monte Carlo simulation” (MCS) embraces a wide class of computational 
algorithms which are effectively capable of simulating complex physical and mathematical 
systems. The simulations are performed by repeated deterministic computation of user-
defined transformation models using random values as input (i.e. random values drawn from 
user-generated sampling distributions). MCS is often used when the model is complex, 
nonlinear, or involves several uncertain parameters. The number of evaluations/repetitions 
necessary to establish the probability distributions of the output parameters will depend on the 
number of input parameters, their probability distributions, the complexity of the propagation 
model and the accuracy requirements of the output.  A simulation can easily involve over 
10,000 evaluations of the model.  
 
Monte Carlo simulation allows consistent processing of uncertainties in input parameters and 
models, regardless of the degree of linearity and the complexity of transformation models, 
and of the magnitude of uncertainties in parameters and models. Other notable advantages of 
MCS over other techniques include: (a) the possibility of appreciating (to the degree of 
precision desired by the user and imposed by the quality of input data) the shape of the output 
variable; (b) the possibility of including complex mathematics (e.g. logical statements) with 
no extra difficulty; and (c) the possibility to model transformation uncertainty directly and to 
assess its effect on model outputs (Vose 2008). 
 
Monte Carlo simulation requires the generation of artificial samples of input random variables 
from purposely selected distributions. Such process requires sequentially: (a) the assignment 
of a probability distribution type; (b) the assignment of characteristic distribution parameters; 
and (c) sampling from the distributions. In addition, computation power needs may be large 
for complex models. 
 
The Monte Carlo simulation technique is implemented in some commercial slope stability 
analysis packages (e.g. Geo-Studio, 2010). However, when the probability of failure is very 
small, the number of simulations required to obtain an accurate result directly is so large that, 
except for very simple (or simplified) problems, it renders the application impractical. In 
these situations the conditional probability of failure can be determined for various low 
probability scenarios, and then combined, considering the scenario probabilities. Monte Carlo 
simulation can be optimized by stratified sampling techniques, for example Latin Hypercube 
sampling (Iman & Conover 1982). These “organized” sampling techniques considerably 
reduce the number of simulations required for a reliable distribution of the response. 
 
4.2.2 Point estimation methods (PEM) 

Point estimation methods (PEM), originally proposed by Rosenblueth (1975) and 
subsequently extended by various researchers (e.g. Hong 1998), are a class of simple and 
direct procedures for computing low-order moments of functions of random variables. 
However, they suffer from several shortcomings. First, they do not perform satisfactorily 
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when the distribution of the output is significantly different from those of the input variables. 
Second, PEM methods should not be applied when the transformation model cannot be 
approximated satisfactorily by a third-order polynomial, and, similarly to FOSM, in presence 
of large uncertainties in inputs. Another shortcoming of PEM lies in the fact that point 
estimates are less reliable for statistical moments beyond second-order (Baecher & Christian 
2003).  
 
4.2.3 First order, second moment approximation (FOSM) 

The basis of FOSM approximation (e.g. Ayyub & McCuen 2003) lies in the statement that 
satisfactory estimates of the second-moment parameters (mean, standard deviation) of a 
random variable which is a function of other random variables may be calculated if second-
moment parameters of the input random variables and the transformation model relating 
inputs to output are known. The FOSM approximation uses a Taylor series expansion of the 
variable to be evaluated.  
 
Consider Y to be a function of random variables x1, x2, …, xn; that is 
   
 Y = f (x1, x2, …, xn)          (4.1) 
 
In the general case, x1, x2, …, xn are correlated with covariance matrix [C], i.e. [C] = 
[][R][], where [] is a diagonal matrix of standard deviations and [R] is the (positive-
definite and symmetric) correlation matrix with diagonal elements Rii = 1 and non-diagonal 
elements Rij = ij (ij is the correlation coefficient between variables i and j). In scalar 
notation, Cij = ijRij . 
 
Obviously to evaluate the mean and standard deviation of Y, the joint probability density 
function of x1, x2, …, xn is needed. However, in many practical applications the available 
information about the random variables is limited to their mean and variance. The 
approximate mean and variance of the function Y may still be estimated by a Taylor series 
expansion of the function about the mean values of the random variables and neglecting the 
higher order terms (Ang and Tang, 1984). If the Taylor series is truncated at its linear terms, 
the following first-order estimates of mean and variance are obtained: 
 

  ),......,,(
21 nxxxY f           (4.2) 

      bCb T
Y 2         (4.3) 

 
where the vector {b} denotes ixY  /  evaluated at the mean values of xi, i.e.: 
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Equations 4.2 and 4.3 or 4.4 are referred to as the first-order, second-moment (FOSM) 
approximations of mean and variance of Y. 
 
The FOSM approximation only provides estimates of the mean and standard deviation, which 
are not sufficient by themselves for evaluating the failure probability. To estimate the failure 
probability, one must assume the distribution function for the safety margin or the safety 
factor beforehand. The first step in estimation of failure probability using any probabilistic 
method is to decide on what constitutes unsatisfactory performance or failure. 
Mathematically, this is achieved by defining a performance function G(X), such that G(X)  0 
means satisfactory performance and G(X) < 0 means unsatisfactory performance or “failure”. 
X is a vector of basic random variables including resistance parameters, load effects, 
geometry parameters and model uncertainty. 
 

Example 4.1 
 
Consider a structural element with resistance R, subjected to dead load 
D and live load L. The safety margin (performance function) for this 
element is defined as: 
 
  G = R – D – L  
 
Given the information below, estimate the mean and coefficient of 
variation (CoV = /) of G with and without correlation among the 
parameters. 

Mean values: R = 2.8 D = 1  L = 0.75 
   

Standard deviations: R = 0.3 D = 0.1 L = 0.2 
    

Correlation coefficients: R,D = 0.8 D,L = 0.3 
 
FOSM approximation: 
 G = 2.8 – 1 – 0.75 = 1.05 

    LGDGRGb T  /,/,/  = {1  -1  -1} 
  
No correlation:  
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  G = 0.374, CoV = 0.374/1.05 = 35.6 % 
  
 
 



Deliverable D0.3 Rev. No: 2 
Dealing with uncertainties in modelling, prediction, and decision-making Date: 2011-08-02 
 
 
 

 
 
Grant Agreement No.: 226479  Page 24 of 69 
SafeLand - FP7 

 
With correlation:  
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G = 0.104 

 
  G = 0.323, CoV = 0.323/1.05 = 30.7 % 
 

 
The “reliability index”, defined as 

 
G

G


            (4.5) 

in which G and G  are respectively the mean and standard deviation of the performance 

function, is often used as an alternative performance measure to the factor of safety (Li & 
Lumb 1987, Christian et al. 1994, Duncan 2000).  
 
The reliability index provides more information about the reliability of a geotechnical design 
or a geotechnical structure than is obtained from the factor of safety alone. It is directly 
related to the probability of failure and the computational procedures used to evaluate the 
reliability index reveal which parameters contribute most to the uncertainty in the factor of 
safety. This is useful information that can guide the engineer in further investigations. 
However, the reliability index estimated using the FOSM approach is not “invariant”. Table 
4.2 shows the reliability indices for different formats of the performance function using the 
FOSM method. R and S in the table represent respectively the total resisting force and the 
driving force acting on the slope. CoVR and CoVS in the table denote the coefficients of 
variation of the resisting and the loading forces respectively and F = R / S. 
 

Table 4.2 Performance function format and FOSM reliability index   (Li & Lumb 1987). 
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While the formulation of FOSM approximation is concise and allows direct inclusion of 
correlation among input variables, several potential shortcomings should be acknowledged. 
First, when transformation models are non-linear, first-order approximations of the expected 
value of the output random variable may not be reliable. Second, the quality of approximation 
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is hindered in case of large uncertainties in input variables, which is usually the case in 
quantitative risk estimation for geohazards. 
 
4.2.4 First- and second-order reliability methods (FORM and SORM) 

Hasofer & Lind (1974) proposed the first-order reliability method (FORM), which provides 
an invariant definition for the reliability index. The starting point for FORM is the definition 
of the performance function G(X), where X is the vector of basic random variables. If the 
joint probability density function of all random variables Fx(X) is known, then the probability 
of failure Pf is given by 
 
  Pf  = 

L

x dXXF )(          (4.6) 

where L is the domain of X where G(X) < 0. 
 
In general, the above integral cannot be solved analytically. In the FORM approximation, the 
vector of random variables X is transformed to the standard normal space U, where U is a 
vector of independent Gaussian variables with zero mean and unit standard deviation, and 
where G(U) is a linear function. The probability of failure Pf is then (P[…] means probability 
that …):  

 Pf  = P [G(U) < 0] ≈ P [


n

i 1

iUi –  < 0] =  (-)     (4.7) 

where i is the direction cosine of random variable Ui,  is the distance between the origin 
and the hyperplane G(U) = 0, n is the number of basic random variables X, and  is the 
standard normal distribution function. 
 

 

Figure 4.2 Relationship between reliability index , and probability of failure Pf . 
 
The vector of the direction cosines of the random variables (i) is called the vector of 
sensitivity factors, and the distance  is the reliability index. The probability of failure (Pf) can 
be estimated from the reliability index  using the established equation Pf = 1  () = 
(), where  is the cumulative distribution (CDF) of the standard normal variate. The 



Deliverable D0.3 Rev. No: 2 
Dealing with uncertainties in modelling, prediction, and decision-making Date: 2011-08-02 
 
 
 

 
 
Grant Agreement No.: 226479  Page 26 of 69 
SafeLand - FP7 

relationship is exact when the limit state surface is planar and the parameters follow normal 
distributions, and approximate otherwise. The relationship between the reliability index and 
probability of failure defined by Equation 4.7 is shown in Figure 4.2. 
 
The square of the direction cosines or sensitivity factors (i

2), whose sum is equal to unity, 
quantifies in a relative manner the contribution of the uncertainty in each random variable Xi 
to the total uncertainty.  
 
In summary the FORM approximation involves:  

1. transforming a general random vector into a standard Gaussian vector,  
2. locating the point of maximum probability density (most likely failure point, design 

point, or simply β-point) within the failure domain, and  
3. estimating the probability of failure as Pf ≈ Φ(-β), in which Φ() is the standard 

Gaussian cumulative distribution function.  
 

Example 4.2 
 
Consider an infinite frictional soil slope with thickness H in the vertical direction, soil 
friction angle ', slope angle , unit weight , and pore pressure u at depth H. With the 
following parameters and probability distribution functions, evaluate the probability of 
slope failure and its reliability index. 
 

Parameter   Probability distribution 
H (m) 10.0 1.0 Lognormal 
' 
(degrees) 

35.0 2.0 Normal 

 (degrees) 20.0 1.5 Lognormal 
 (kN/m3) 18.0 0.5 Normal 
u (kPa) 20.0 7.0 Beta, between 0 and 40 

 
The equation for the safety factor of the slope is: 

F = 










)(cos

1
)tan(

)'tan(
2 


H

u
 

A simple limit state function for the performance of the slope is: 
 
G = F – 1 
 
i.e. the slope is stable when the factor of safety is greater than 1, and it fails when the 
factor of safety is less than 1. 
 
Using the software STRUREL (RCP, 1999), the following results are obtained: 
 

Probability of failure: Pf =  3.910-5 
FORM reliability index:  = 3.95 
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The sensitivity factors for the variables are shown on the figure below. The Latin 
symbols in table correspond to the following Greek symbols above: B is , phi is ', and 
gam is . The pie chart shows the squares of the sensitivity factors 2

i . 

 

 
 

 

Figure 4.3 The FORM approximation (right) and definition of  and design point. 
 

An illustration of the design point and graphical representation of β is given in Figure 4.3. 
 
Low (2003) presented a method for finding the reliability index in the original space. His 
approach is based on the matrix formulation of the Hasofer-Lind reliability index  
(Veneziano, 1974; Ditlevsen, 1981): 
 

       XCX T 1min   for   0)(: XGX     (4.8) 

 
or, equivalently: 

u -0.43
B -0.61
phi 0.59
gam 0.08
H 0.30
Sum of a²1.00

Representative Alphas of Variables FLIM(1), slope.pti

 



Deliverable D0.3 Rev. No: 2 
Dealing with uncertainties in modelling, prediction, and decision-making Date: 2011-08-02 
 
 
 

 
 
Grant Agreement No.: 226479  Page 28 of 69 
SafeLand - FP7 

 

   






 







 
 

i

ii

T

i

ii x
R

x





 1min  for   0)(: XGX     (4.9) 

 
in which  nxxxX ,...,, 21 ,  = mean vector of X, C = covariance matrix of X, and R = 

correlation matrix of X. 
 
Low and Tang (1997) used Equation 4.9 in preference to Equation 4.8 because the correlation 
matrix R is easier to set up, and conveys the correlation structure more explicitly than the 
covariance matrix C. Geometrically, for a two-variable problem, Equations 4.8 and 4.9 can be 
interpreted as finding the smallest ellipsoid (of the probability distribution of the variables) 
tangent to the limit state surface, see Figure 4.4. The key advantage of this formulation is that 
it can be implemented using built-in functions in EXCEL without programming and EXCEL 
is widely available on PCs (Phoon and Nadim, 2004). 
 
In the second-order reliability method (SORM), the limit state function is defined as in 
FORM, but the resulting limit state function is approximated by a second order function 
(Breitung 1984). However, for geo-problems the probabilities of failure obtained with SORM 
analyses have been very close to the values obtained with FORM (Lacasse and Nadim, 1999). 
 

 

Figure 4.4 Illustration of β in the plane of original variables (Low, 2003). 
 

4.2.5 System reliability 

A system, for example a complex geotechnical structure, consists of many components or 
elements, whose individual or combined failure can lead to collapse. A simple gravity 
retaining wall would fail if the lateral forces on the wall exceed the base shear resistance 
(sliding mode of failure), if the weight of the wall and vertical forces acting on the wall 
exceed the bearing capacity at the base (bearing capacity mode of failure) or if the driving 
moment from the external loads exceeds the resisting moment from the weight of the wall 
(rotational mode of failure). The wall could therefore be thought of as a system that comprises 
three components whose individual failure would constitute the failure of the wall.  
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The methods and examples discussed in the previous section generally characterize the 
performance and reliability of a single component of a complete system. The failure event of 
a system, in a reliability sense, is defined as the union, or intersection, or combinations 
thereof, of component failure events. In a graphical representation of a system, the 
components are represented by boxes that are connected together by lines to form the system. 
Input and output are marked by arrows (see Figure 4.5).  
 

 
 

 
 
 
 
 
  

 
 

(a) Series system (b) Parallel system 
 

Figure 4.5 Schematic representation of series and parallel systems. 
 
It is useful to distinguish between two basic types of systems depending on the logical 
structure of the components, namely series and parallel systems. In a series system the 
individual components are connected in series with regard to their function (Figure 4.5a). A 
series system will fail if any of its components fail, i.e. the system failure event is the union of 
all the component failure events. As a simple example, consider a chain consisting of many 
links. If the weakest link breaks, the chain fails. That is, the least reliable link determines the 
reliability of the system. If a series system is composed on “n” statistically independent 
components, then the probability of system failure can be computed from the probability of 
failure of individual components by the following equation: 
 

 Pf,system =  
 


n

i

n

i
ifif PP

1 1
,, )1(1        (4.10) 

 
The summation approximation is valid for very small probabilities of failure Pf,i.  
 
Obviously the probability of failure of a series system increases with the number of elements 
and is largely governed by the probability of failure of its most unreliable element. If all 
elements of a series system are perfectly correlated, then: 
 
 Pf,system = max[Pf,i]         (4.11) 
 
Thus the probability of failure of a series system lies within the following bounds: 

 max[Pf,i]    Pf,system  
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In a parallel system, the elements of the system are connected in parallel with regard to their 
function (Figure 4.5b). This means that a parallel system will fail if all its components fail, i.e. 
the system failure event the intersection of the component failure events. 
If a parallel system is composed on “n” statistically independent components, then the 
probability of system failure can be computed from the probability of failure of individual 
components by the following equation: 

 Pf,system = Pf,1Pf,2…. Pf,n = 


n

i
ifP

1
,         (4.13) 

If all elements of a parallel system are perfectly correlated, then: 
 
 Pf,system = min[Pf,i]         (4.14) 
 
That is, the probability of failure of a parallel system is never greater than probability of 
failure of its most unreliable element. The probability of failure of a parallel system, therefore, 
lies within the following bounds: 

 


n

i
ifP

1
,    Pf,system  min[Pf,i]         (4.15) 

In constructed facilities, true parallel systems are rare. Consider, for example, a foundation 
slab supported by six piles. This foundation system, on the first sight, might well be 
considered a parallel system consisting of six components, as all six piles must fail in order 
for the foundation to fail. However, the carrying capacities of the piles are strongly correlated. 
Furthermore, the question of ductile versus brittle failure of the components in the system is 
of prime importance. While a ductile component may continue to carry load until the other 
elements of the system yield, a brittle component stops carrying its share of load, leaving the 
remaining components with even more load. 
 
Most real life systems are mixed systems that could be represented as a series connection of 
subsystems, where each subsystem comprises parallel components. Some commercial 
software for computation of system reliability (e.g. STRUREL) require that the system is 
represented is terms of minimal unions of intersections, also denoted as minimal cut-set.  
 
 
4.3 HYBRID METHODS TO PROPAGATE RANDOMNESS AND IMPRECISION 

In case one or many parameters are semi-quantitative and sufficient data are available to 
represent other input parameters of the model by probabilities, “hybrid” methods to jointly 
propagate randomness and imprecision can be used. For instance, the approach of Guyonnet 
et al. (2003) (and further developed by Baudrit et al. 2007) relies on the combination of 
Monte-Carlo techniques (random sampling of the probabilistic distribution assigned to 
random parameters) with Fuzzy interval analysis (applied to the possibility distribution 
assigned to the imprecise parameters, Dubois et al. 2000). The result of the propagation is 
summarized based on the general framework of the evidence theory (Shafer, 1976), hence 
producing a pair of probabilistic distributions (i.e. Plausibility and Belief distributions). 
 
In the field of CO2 storage risk assessment, Figure 4.6 depicts the pair of probabilistic 
indicators assigned to the CO2 plume extension within the storage reservoir computed by 
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(Bellenfant et al. 2009) using the “hybrid” approach. Due to the imprecision of input 
parameters, the probability assigned to the CO2 plume extension is not unique and lies within 
the interval defined by the Belief and the Plausibility indicators. For instance, the probability 
the CO2 plume extension to be inferior to 13 km ranges from 70 to 100 % (area north). Note 
that if sufficient data were available, all input parameters would be represented by 
probabilistic distributions and the probability assigned to CO2 plume extension would be 
unique. 
  
The gap between both indicators represents a measure of the epistemic uncertainties 
(imprecision). Thus, this method provides guidelines for site characterization as it underlines 
regions were more data should be gained to reduce this gap, hence the imprecision. 
 

 

Figure 4.6 Pair of cumulative probabilistic distributions assigned to the CO2 plume extension 
(Belief and Plausibility). The probability that the CO2 extension is inferior to 13 km ranges 
from 70 and 100 %. Adapted from (Bellenfant et al. 2009) 
 
 
4.4 EVENT TREE ANALYSIS 

For a complex system, the conditions that could lead to any of the potential modes of failure 
may be quite involved and an event tree analysis is often the optimum way to quantify hazard 
and risk. Given a number of possible consequences resulting from an initiating event, the 
sequence of following events need to be identified and their probability of occurrence needs 
to be quantified. This can be done systematically and effectively through the use of an event 
tree diagram. The approach is widely used for dams, but is also useful for slopes with 
complex history, e.g. a rock slope with possibly different volumes sliding over time followed 
by a tsunami. Ang and Tang (1984) and Whitman (1984) presented several application 
examples for the method. Figure 4.7 illustrates event tree analysis. 
 
A general event tree is shown in Figure 4.7 with an initiating event, E, and a number of possi-
ble consequences, Cij. . . k. It can be observed that a particular consequence depends on the 
subsequent events following the initiating event; in other word, for a given consequence to 
occur, a sequence of subsequent events, or path in the event tree, must occur. Given an ini-
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tiating event, there may be several "first subsequent events" that will follow. Obviously, these 
subsequent events are mutually exclusive. If we assume a particular first subsequent event, a 
mutually exclusive set of "second subsequent events" is possible. Each path in the event tree, 
therefore, represents a specific sequence of (subsequent) events, resulting in a particular 
consequence. The probability associated with the occurrence of a specific path is simply the 
product of the (conditional) probabilities of all the events on that path. 
 

 

 

Figure 4.7 Event tree model and example for the analysis of a slope. 
 

Each event in the event tree is associated with a probability of occurrence. The probabilities 
can be obtained by first assigning a verbal descriptor as given below. The sum of the prob-
abilities at any node is always unity, if all possible events have been included. The estimates 
rely heavily on engineering judgment. Observations are also very useful in assisting 
judgment. Each outcome in the event tree ends up as failure or no failure. The total prob-
ability of failure is the summation of the probabilities of each outcome leading to failure. If 
data are available, component events should be treated statistically, for example the 100-year 
and 1000-year rainfall or flood, based on historic data, the earthquake frequency and response 
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spectrum. In practice, the results of an event tree analysis prove even more useful when done 
for several slopes and compared.  
 
To achieve consistency in the evaluation of the probabilities from one dam to another, con-
ventions have been established to anchor the probabilities. An example of descriptors of 
uncertainty used in the dam profession goes as follows: 
 

Verbal description of uncertainty  Event probability 
Virtually impossible     0.001 
Very unlikely      0.01 
Unlikely      0.10 
Completely uncertain     0.50 
Likely       0.90 
Very likely      0.99 
Virtually certain     0.999 

 
Virtually impossible: event due to known physical conditions or processes that can 

be described and specified with almost complete confidence. 
Very unlikely: the possibility cannot be ruled out on the basis of physical or 

other reasons. 
Unlikely:  event is unlikely, but it could happen 
Completely uncertain:  there is no reason to believe that one outcome is any more or 

less likely than the other to occur. 
Likely:  event is likely, but it may not happen. 
Very likely:  event that is not completely certain.  
Virtually certain:  event due to known physical conditions or processes that can 

be described and specified with almost complete confidence. 
 
The Intergovernmental Panel on Climate Change (IPCC, 2010) uses a similar scale for 
quantification of likelihood scales (Table 4.3). However, they recommend a probability range 
instead of a specific probability value. This conclusion is supported by several psychometric 
studies (see Piercey, 2009 and references therein). The issue of translating numerical 
probability values into words (and vice versa) is still an active research subject in the field of 
“Linguistic Probabilities” (e.g., Halliwell and Shen, 2009) relying on approaches of Fuzzy 
Theory. 
 

Table 4.3 Calibrated language for describing quantified uncertainty (IPCC, 2010). 
Likelihood may be based on statistical or modelling analyses, elicitation of expert views, or 
other quantitative analyses. 
 

Term Likelihood of the Outcome 
Virtually certain  99 - 100% probability 
Very likely  90 - 100% probability 
Likely  66 - 100% probability 
About as likely as not 33 - 66% probability 
Unlikely  0 - 33% probability 
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Very unlikely  0 - 10% probability 
Exceptionally unlikely 0 - 1% probability 

 
 
4.5 SUMMARY, PROBLEMS AND GAPS 

Below, the MOVE (2011) framework in Figure 2.1 is used to categorize relevant methods for 
the treatment of uncertainties. Table 4.4 summarises the methodological information 
presented above. 
 

Table 4.4 Summary of applicable approaches depending on “type of input data” and “type of 
method for the propagation of uncertainty”. Recommended approaches for the different 
combinations of input data and methods are underlined (adapted from MOVE, 2011). 

 

 Type of Input data 
Column A B C 

 

R
ow

  Qualitative Semi-quantitative Quantitative 

M
et

h
od

 

1 Implicit 

Expert judgment 
Qualitative scenario 
analysis 

Multi-criteria decision 
analysis (including 
Fuzzy logic 
Bayesian 
theory/networks) 
NUSAP (Numerical, 
Unit, Spread, 
Assessment and 
Pedigree) 

Fuzzy logic 
Bayesian 
theory/networks 

2 Explicit 

Appropriate input data 
ranking procedure 
Monte-Carlo simulation 
Fuzzy logic 
NUSAP (Numerical, 
Unit, Spread, 
Assessment and 
Pedigree) 
Expert judgement 

Monte-Carlo simulation 
Fuzzy logic 
NUSAP (Numerical, 
Unit, Spread, 
Assessment and 
Pedigree) 
Expert judgement 
Possibility theory and 
hybrid methods 

Monte-Carlo simulation 
First-order second 
moment 
First-order reliability 
method 
NUSAP (Numerical, 
Unit, Spread, 
Assessment and 
Pedigree) 
Expert judgement 
 

 
Reasoning for recommended approaches for different combinations of “input data” and 
“method” as summarised in Table 4.4: 
 
Implicit methods: Cells A1, B1 and C1 in Table 4.4 

 The Bayesian approach is a powerful tool, because it combines observations with 
expert judgement. Bayesian theory enables update and revise of belief values (values 
obtained from expert judgment) when new information (evidence) becomes available. 

 Fuzzy logic is a very useful and flexible approach when data are missing, when very 
uncertain or only qualitative data is available and for very complex processes. It can 
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handle approximations and semantic notions with a logic based mathematical 
formulation. 

 Expert judgment as an implicit method encompass unstructured and undocumented 
knowledge of experts 

 
Explicit methods – qualitative input data: Cell A2 in Table 4.4 

 To be able to use an explicit method to process qualitative input data, a ranking 
procedure must be applied to the input data, effectively transforming the input to a 
semi-quantitative or quantitative format. After ranking, the reader is referred to 
methods for semi-quantitative or quantitative data, see cells B2 or C2 respectively. 

 
Explicit methods – semi-quantitative input data: Cell B2 in Table 4.4 

 Fuzzy classification enables indicators to have a degree of membership in adjacent 
fuzzy sets, or in other words within two indicator categories. The propagation of 
uncertainty associated with input parameters is processed using fuzzy rules and the 
final categorisation is effectively performed by defuzzification. 

 Monte Carlo with categorical data could be performed in two ways: 
a) Combine Monte Carlo Simulation and fuzzy logic, i.e. fuzzy classification. 

(This procedure is also classified as a hybrid method) 
b) If the categorisation is performed using score values in input and output 

parameters, Monte Carlo Simulation could be performed on the continuous 
score values in the input parameters. Then the categorisation is done on basis 
of the distribution of the output parameter scores. 

 
In conclusion, the described procedures give both a parameter categorisation and additional 
information on the uncertainty associated with the categorisation. 
 
Explicit methods –quantitative input data: Cell C2 in Table 4.4 
The choice of method for treatment of uncertainties using explicit methods with quantitative 
input parameters depend on the formulation of the explicit method.  

 Monte Carlo Simulation is the most flexible tool which can be used for all types of 
methods. It is available in several softwares and has the ability to provide the most 
accurate probability distribution of the output parameters. However, the method 
requires detailed data and a large number of simulations need to be run to obtain good 
results.  

 If the parameter is formulated as a limit state function, the most convenient and 
reasonably accurate method for assessment of the uncertainties is the First Order 
Reliability Method (FORM).   

 For other model formulations the First Order Second Moment (FOSM) method could 
be used as an approximation. FOSM is a simple and convenient method, for which 
only mean and standard deviation of the input parameters are needed.  However, 
because the method is independent of the probability distributions of the input 
parameters, it provides approximations for the mean and standard deviation only and 
might be too simplistic when uncertainties in input parameters are large. 
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A general problem related to risk estimation is lack of data. Despite large uncertainties 
associated with natural processes that control hazard level, more uncertainty is often related to 
vulnerability than hazard when carrying out landslide risk assessment. 
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5 DEALING WITH UNCERTAINTY IN DECISION MAKING 

5.1 INTRODUCTION 

Decision making may be defined as the process of select making a logical choice from among 
several available options. Typical decision problems are subject to a combination of inherent, 
modelling and statistical uncertainties. When trying to make an appropriate good decision, a 
decision maker must weight the positives and negatives of each option, and consider all the 
alternatives. For effective decision making, a decision maker must be able to forecast the 
outcome of each option as well, and based on all these items, determine which option is the 
best for that particular situation. Most of decision theory is normative or prescriptive, i.e., it is 
concerned with identifying the best decision to take, assuming an ideal decision maker who is 
fully informed, able to compute with perfect accuracy, and fully rational.  
 
The practical application of this prescriptive approach (how people actually make decisions) 
is called decision analysis. The objective of a decision analysis (DEA) is to discover the most 
advantageous alternative under the circumstances. Among management tools for decision 
analysis we find statistical tools such as decision tree analysis, multivariate analysis, and 
probabilistic forecasting. The most systematic and comprehensive software tools developed in 
this way are called decision support systems. 
 
5.2 DECISION ANALYSIS (DEA) 

Decision analysis using weight of evidence (WOE) can be defined as a framework for 
synthesizing individual lines of evidence, using methods that are either qualitative (examining 
distinguishing attributes) or quantitative (measuring aspects in terms of magnitude) to develop 
conclusions regarding questions concerned with the degree of impairment or risk. Even 
though all WOE methods may include qualitative and quantitative considerations, i.e implicit 
and explicit procedures, Linkov (2009) order the methods are by increasing degree of 
quantification (Table 5.1). 
 

Table 5.1 Weight of evidence methods (Linkov 2009) 
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Generally, Quantitative WOE methods statistically derive risk probabilities from several lines 
of evidence and use formal decision-analytical tools. When more than one method is depicted 
at the same level (e.g., Logic/Causal Criteria and Indexing/Scoring), this reflects that several 
methods have comparable quantitative rigor within the qualitative/quantitative continuum. A 
key consideration, however, is that neither Scoring nor Indexing quantifies judgments using 
formal decision analysis or probabilistic techniques. As a result, the transparency and 
reproducibility of these methods—as well as their ability to handle nonlinearity and 
correlation across criteria—serve as the delineating factors between Scoring/ Indexing and 
Quantitative methods. Quantification methods, unlike Scoring/Indexing methods, are able to 
integrate nonlinearity and correlations into their methodologies. They also allow transparent 
and reproducible integration of scientific results with individual expert or decision maker 
judgment (Section 4.1.1) and comparison across multiple experts. In cases with conflicting 
expert views, different strategies can be applied including making reliability estimates for 
each expert. Multi criteria decision analysis (MCDA) is an example of a quantification 
method that uses likelihoods to synthesize weights of evidence.  
 
 
5.3 UNCERTAINTY IN DECISION ANALYSIS – AN ENGINEERING 

INTERPRETATION 

A significant issue to deal with in decision analysis is to provide a clear and rational basis 
with regard to the cost-efficient safeguarding of personnel, environment, and assets in 
situations where uncertainties are at hand. 
 
A classical example is the decision problem of choosing the height of a dike. The risk of dike 
flooding can be reduced by increasing the height of the dike; however, due to the inherent 
natural variability in the water level, a certain probability of dike flooding in a given reference 
period will always remain. Risk assessment within the theoretical framework of decision 
analysis can help in deciding on the optimal dike height by weighing the benefits of reduced 
dike flooding risks with the costs of increasing the dike height. However, a prerequisite for 
the risk assessment is that the means for assessing the probability of dike flooding are 
established, and this in turn requires that a probabilistic model for the future water level is 
available. 
 
For the purpose of discussing the phenomenon of uncertainty in more detail, it is initially 
assume that the universe is deterministic and that our knowledge about the universe is perfect. 
This implies that it is possible by means of, e.g., a set of exact equation systems and known 
boundary conditions by means of analysis to achieve perfect knowledge about any state, 
quantity, or characteristic that otherwise cannot be directly observed or has yet not taken 
place. In principle, following this line of reasoning the future as well as the past would be 
known or assessable with certainty. Considering the dike flooding problem, it would thus be 
possible to assess the exact number of floods that would occur in a given reference period (the 
frequency of floods) for a given dike height and an optimal decision can be achieved by a cost 
benefit analysis. 
 
Whether the universe is deterministic or not is a rather deep philosophical question. Despite 
the obviously challenging aspects of this question its answer is, however, not a prerequisite 
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for purposes of decision making, the simple reason being that even if the universe would be 
deterministic our knowledge about it is still in part highly incomplete and/or uncertain. 
   
In decision analysis procedures subject to uncertainties such as Quantitative Risk  Analysis   
(QRA)   and   Structural  Reliability Analysis (SRA), a commonly  accepted view angle is that 
uncertainties should be interpreted and differentiated in regard to their type and origin. In this 
way it has become standard to differentiate between uncertainties due to inherent natural 
variability, model uncertainties, and statistical uncertainties. As briefly discussed in Chapter 
2, the first mentioned type of uncertainty is often denoted aleatory or Type 1  uncertainty and 
the two latter types are referred to as epistemic  or Type 2  uncertainties. Without further 
discussion here it is just stated that, in principle, all prevailing types of uncertainties can be 
taken into account in engineering decision analysis within the framework of Bayesian 
probability theory; a more detailed treatment of this issue is given in Paté-Cornell (1996)  and 
Lindley (1976). As discussed in Paté-Cornell (1996), while the challenge of dealing with 
aleatory uncertainties can also be addressed by e.g. frequentistic methods of probabilistic 
analysis, the use of a Bayesian approach provides a sound and holistic basis for handling both 
the aleatory and more importantly and crucially the epistemic uncertainties that stem from 
incomplete or imperfect knowledge about processes and phenomena in the universe. 
 
Within this framework, it is useful to distinguish two fundamentally different types of 
uncertainties, namely epistemic and aleatory uncertainties. This distinction has been 
considered for risk assessment of technical systems, e.g., Apostolakis (1990) or Helton and 
Burmaster (1996), and increasingly for natural hazards, e.g., Hall (2003), Apel et al. (2004) or 
Straub and Der Kiureghian (2008), but has been discussed also for general geological 
applications by Mann (1993). Aleatory uncertainties are interpreted as random uncertainties, 
which, for a given model, are naturally inherent to the considered process; epistemic 
uncertainties are related to our incomplete knowledge of the process, often because of limited 
data and can be characterised in the form of model uncertainties and statistical uncertainties. 
 
The absolute and relative magnitudes of aleatory and epistemic uncertainty are markedly 
case-specific. This differentiation in uncertainties is introduced for the purpose of setting 
focus on how uncertainty may be reduced, rather than calling for a differentiated treatment in 
the risk assessment and decision analysis process. The distinction is relevant because aleatory 
uncertainty cannot be reduced for a given model. In contrast, epistemic uncertainty can be 
reduced, for instance, by collecting additional information. For this reason, a clear 
identification of the epistemic uncertainties in the analysis is crucial, as these may be reduced 
at a later time. Furthermore, neglecting epistemic uncertainty can lead to strong 
underestimation of the risk, see Coles et al. (2003) for an example. 
 
Considering again the dike example, an engineering model can be formulated where future 
extreme water levels are predicted in terms of a regression of previously observed annual 
extremes. In this case, the uncertainty due to inherent natural variability would be the 
uncertainty associated with the annual extreme water level. The model chosen for the annual 
extreme water level events would by itself introduce model uncertainties and the parameters 
of the model would introduce statistical uncertainties, as their estimation would be based on a 
limited number of observed annual extremes. Finally, the extrapolation of the annual extreme 
model to extremes over longer periods of time would introduce additional model 
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uncertainties. The uncertainty associated with the future extreme water level is thus composed 
as illustrated in Figure 5.1. 
 
Whereas the so-called  inherent natural variability is often understood as the  uncertainty 
caused by the fact that the universe is not  deterministic, it may also be interpreted simply as 
the uncertainty that cannot be reduced by means of the collection of additional information; 
see, e.g., Ditlevsen and Madsen (1996). It is seen that this definition implies that the amount 
of uncertainty due to inherent natural variability depends on the models applied in the 
formulation of the engineering problem. Presuming that a refinement of models corresponds 
to looking with more detail at the problem at hand, one could say that the uncertainty 
structure influencing a problem is scale dependent. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1 Illustration of uncertainty composition in a typical engineering problem 
 
 

 
 

Figure 5.2 Illustration of the time dependence of knowledge 
 
Having formulated a model for the prediction of future extreme water levels and taking into 
account the various prevailing types of uncertainties, the probability of flooding within a 
given reference period can be assessed and just as in the case of a deterministic and perfectly 
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known universe we can decide on the optimum dike height based on a cost benefit 
assessment. 
 
It is interesting to notice that the type of uncertainty associated with the state of knowledge 
has a time dependency. Following Figure 5.2, it is possible to observe an uncertain 
phenomenon when it has occurred. In principle, if the observation is perfect without any 
errors the knowledge about the phenomenon is perfect. The modelling of the same 
phenomenon in the future, however, is uncertain as this involves models subject to natural 
variability, model uncertainty, and statistical uncertainty. Often but not always the models 
available tend to lose their precision rather fast so that phenomena lying just a few days or 
weeks ahead can be predicted only with significant uncertainty. An extreme example of this 
concerns the prediction of the weather. 
 
The above discussion shows another interesting effect, namely that the uncertainty associated 
with a model concerning the future transforms from a mixture of aleatory and epistemic 
uncertainty to a purely epistemic uncertainty when the modeled phenomenon is observed. 
This transition of the type of uncertainty has a significant importance because it facilitates the 
fact that the uncertainty is reduced by utilization of observation – referred to as updating. 
 
 
5.4 BAYESIAN DECISION ANALYSIS AND PROBABILISTIC MODELLING 

Consistent decision making subject to uncertainties is treated in detail in Raiffa and Schlaifer 
(1961) and Benjamin and Cornell (1970). In this section, an introduction to three different 
decision analyses is given – namely prior, posterior and pre-posterior decision analysis. Other 
aspects on decision analysis in engineering applications are treated in Apostolakis (1990), 
Paté-Cornell (1996) and Faber and Stewart (2003). An example on the modelling and 
management of uncertainties associated with rockfall hazards illustrating the concepts of 
Bayesian probabilistic modelling is provided in Chapter 6 of this report. 
 
5.4.1 Prior decision analysis 

The simplest form of the decision analysis is prior analysis. In the prior analysis, the risk 
(expected utility) is evaluated on the basis of statistical information and probabilistic 
modelling available prior to any decision and/or activity. This prior decision analysis is 
illustrated by a simple decision tree in Figure 5.3. In prior decision analysis the risk (expected 
utility) for each possible decision activity/option is evaluated in the principal form as: 
 

 
1

 
n

i i
i

R E U P C


                       (5.1) 

 
where R is the risk, U the utility, iP  is the ith branching probability (the probability of state i) 
and iC the consequence of the event of branch i.  
 
Prior decision analysis in fact corresponds closely to the assessment of the risk associated 
with an activity. Prior decision analysis thus forms the basis for the simple comparison of 
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risks associated with different activities. The result of a prior decision analysis might be that 
the risks are not acceptable and the risk reducing measures need to be considered.  
In structural engineering a typical prior decision analysis is the design problem. A design has 
to be identified which complies with given requirements to the structural reliability. The 
representation of uncertainties is made on the basis of the existing information about materials 
and loads, however, as these have not occurred yet the probabilistic modelling involve both 
aleatory and epistemic uncertainties. As a general comment it should be noted that in the 
context of setting requirements to reliability and risk it is necessary to ensure consistency 
between the probabilistic models used for setting the requirements and the probabilistic 
models used for their verification.  
 
 

 

Figure 5.3 Decision tree for prior and posterior decision analysis 
 
 

5.4.2 Posterior decision analysis 

Posterior decision analysis is in principle of the same form as the prior decision analysis, 
however, changes in the branching probabilities and/or the consequences in the decision tree 
reflect that the considered problem has been changed as an effect of e.g. risk reducing 
measures, risk mitigating measures and/or collection of additional information. Posterior 
decision analysis may thus be used to evaluate the efficiency of risk reducing activities with 
known performances. The posterior decision analysis is maybe the most important in 
engineering applications as it provides a means for the utilization of new information in the 
decision analysis – referred to as updating; this is described in short in the following.    
 

5.4.2.1 Uncertainty updating – updating of random variables 

Inspection or test results relating directly to realizations of random variables may be used in 
the updating. The distribution parameters are initially (and prior to any update) modeled by 
prior distribution functions.  
 
By application of Bayes theorem, see e.g. Lindley (1976), the prior distribution functions, 
assessed by any mixture of frequentistic and subjective information, are updated and 
transformed into posterior distribution functions. 
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Assume that a random variable X has the probability distribution function )(xFX  and density 
function )(xf X . Furthermore assume that one or more of the distribution parameters, e.g. the 
mean value and standard deviation of X are uncertain themselves with probability density 
function )(qfQ . Then the probability distribution function for Q may be updated on the basis 

of observations of X, i.e. x̂ . 
The general scheme for the updating is: 
 

dq )x|L(q (q)f

)x|L(q q)f
 = )x|(qf

Q

Q
Q

ˆ

ˆ(
ˆ

'

'
''






                    (5.2) 

 
where )(qfQ  is the distribution function for the uncertain parameters Q and )ˆ( xqL is the 

likelihood of the observations or the test results contained in x̂ . Here ´´ denotes the posterior 
and ´ the prior probability density functions of Q. The observations x̂  may not only be used to 
update the distribution of the uncertain parameters Q, but also to update the probability 
distribution of X. The updated probability distribution function for X )(xf U

X  is often called the 
predictive distribution or the Bayes distribution. The predictive distribution may be assessed 
through  
 

dq)x|(qfqxfxf QX
U
X 





 ˆ)()( ''                     (5.3) 

 
In Raiffa and Schlaifer (1961) and Aitchison and Dunsmore (1975) a number of closed form 
solutions to the posterior and the predictive distributions can be found (also collected in JCSS 
(2000)) for special types of probability distribution functions known as the natural conjugate 
distributions. These solutions are useful in updating of random variables and cover a number 
of distribution types of importance for reliability based structural reassessment. However, in 
practical situations there will always be cases where no analytical solution is available. In 
these cases FORM/SORM techniques as discussed in Section 4.2.4 (also in Madsen et al. 
(1986)) may be used to integrate over the possible outcomes of the uncertain distribution 
parameters and in this way allow for assessing the predictive distribution. 
 

5.4.2.2 Probability updating - updating of uncertain relations 

In many practical problems the observations made of realizations of uncertain phenomena 
cannot be directly related to random variables. In such cases other approaches must be 
followed to utilize the available information. Given an inspection result or other observation 
of an outcome of a functional relationship between several basic variables, probabilities may 
be updated using the definition of conditional probability or its extension known as Bayes 
formula: 
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F = Failure 
I = Inspection result 
 
For a further evaluation of Equation (5.4) it is important to distinguish between the types of 
inspection results. For inequality type information which may be expressed by limit states of 
the following form ( ) 0h X , Equation (5.4) may be elaborated in a straightforward way. Let F 
be represented by M(x)   0, where M denotes the safety margin. We then have: 
 

)0(

)00(
)(

) < h(P

) <  h(  ) M(P
IFP

X

XX 
                    (5.5) 

 
where X = vector of random variables having the prior distribution )(xXf . This procedure can 
easily be extended to complex failure modes and to a set of inspection results ( 0 < )h x(i ). 
 
5.4.3 Pre-posterior decision analysis 

Using pre-posterior decision analysis optimal decisions in regard to information collection 
activities, which may be performed in the future, can be identified. Pre-posterior decision 
analysis is excellently described in e.g. Raiffa and Schlaifer (1961) and Benjamin and Cornell 
(1970). The principle behind the pre-posterior decision analysis is that the outcomes of 
planned information collection activities are assumed to follow the prior probabilistic model 
of uncertainties. Based on these assumed outcomes and taking into account any uncertainties 
associated with the observation and/or interpretation of the outcomes posterior decision 
analyses are performed. The corresponding risks are thereafter weighed with their probability 
of occurrence, again based on the prior probabilistic modelling. The pre-posterior may thus be 
interpreted as a posterior decision analysis made before new information is actually collected. 
The principle is also illustrated by the decision tree shown in Figure 5.4. An important pre-
requisite for pre-posterior decision analysis is that decision rules specifying future actions 
which will be taken on the basis of the results of the planned information collection activities 
need to be formulated. 
 

 

Figure 5.4 Decision tree for pre-posterior decision analysis 
  
In pre-posterior decision analysis, the risk (expected utility) for each of the possible risk 
reducing activities is evaluated as 
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where ( )a z are the decision rules describing the different possible actions that can be take on 
the basis of the result of the considered investigation z ,  E  is the expected value operator. 

( ) ( )i iP C is the product of the probability of the i’th event resulting from the decision and the 
corresponding consequences. ´ and  ´´ refer to the probabilistic description of the events of 
relevance based on prior and posterior information respectively, see e.g. Lindley (1976).   
Pre-posterior decision analysis forms a strong decision support tool and has been intensively 
used for the purpose of risk based inspection planning see e.g. Faber (2002). However, so far 
pre-posterior decision analysis has been grossly overlooked in risk assessments in general. 
 
5.4.4 Uncertainty representation in updating 

As mentioned earlier, it is important to differentiate between the different types of uncertainty 
in the probabilistic modelling of uncertain phenomena. Only when the origin and the nature of 
the prevailing uncertainties are fully understood a consistent probabilistic modelling can be 
established allowing for rational decision making regarding risk reduction by means of 
posterior and pre-posterior decision analysis. In the following the representation of 
uncertainties for representative posterior and pre-posterior decision problems is thus 
addressed and discussed. 
 

5.4.4.1 Uncertainty modelling in posterior decision problems  

In engineering decision analysis posterior decision problems typically involve the updating of 
the probability of a future adverse event F , U

FP  conditional on the observation of an event I  
which can be related to the adverse event. Such observations may in general be considered as 
being indications about the adverse event. The probability U

FP  may be assessed by Equation 
(5.4): 
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                                 (5.7) 

 
Taking basis in Equation (5.7) a simple case is now considered where the adverse event is a 
future (  Tt, ) failure event in terms of a load )(S  exceeding the resistance R of an existing 
structural component. Furthermore it is assumed that the indicator I is the event that the 
component has survived all previous realizations of the loading )(S  t,0 . Then Equation 
(5.7) can be written as: 
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                (5.8) 

 
In accordance with the considerations made in the previous R is an epistemic uncertainty 
since it has already had its realization but it is still unknown and thus uncertain. As long as no 
other information is available it would be consistent to model the epistemic uncertainty 
associated with R using the same model assumptions (distribution type etc.) as before R had 
its realization. )(S  is “in principle” an aleatory uncertainty (assuming that no model and/or 
statistical uncertainties are involved in the modelling of the load) when we consider future 
loads i.e. for  Tt, . The uncertainty associated with )(S  is of an epistemic nature when we 
consider already occurred load events, i.e.  t,0 . The wording “in principle” is used because 
the temporal dependency characteristics of the loading )(S  play a significant role.  If the load 
events (or extreme loads) in consecutive time intervals are assumed to be conditional 
independent – a relatively normal case in engineering problems – then the consideration 
outlined in the above are valid. This also implies that the uncertainty associated with the 
future loading cannot be updated on the basis of observations of the past loading. However, if 
the load events in consecutive time intervals are dependent then a part of the uncertainty 
associated with the future loading becomes epistemic as soon as its first realization has 
occurred. The “size” of the part depends on the temporal dependency.  
 
 
 
 
 
 
 
 
 
 

Figure 5.5 Illustration of a load with high degree of temporal dependency 
 
In Figure 5.5, it is illustrated how the load events in consecutive time intervals may be highly 
dependent due to e.g. a dominating dead load component. Before the dead load component is 
realized the loading in the future might be subject to aleatory uncertainty only. As soon as the 
dead load component is realized a large part of the uncertainty associated with the future 
loading becomes epistemic. This effectively implies that this part of the uncertainty associated 
with the future loading can be updated on the basis of observations of the past loading. In 
other words – the part that can be updated is exactly the epistemic part of the uncertainty. If 
the probabilistic modelling of the uncertainties and the probability updating is performed in 
accordance with Equation (5.8) and the considerations outlined in the above then, the 
resulting probabilistic modelling and the representation of the different types of uncertainties 
is consistent. However, if in the representation of the adverse event and the updating event the 
different types of uncertainty and the temporal dependency is not consistently taken into 
account, the results may become grossly erroneous and non-physical. 
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5.4.4.2 Uncertainty modelling in pre-posterior decision problems  

As can be realized from Equation (5.6) pre-posterior decision problems may be seen as a 
series of posterior decision problems for which the optimal solutions are averaged out over 
the entire prior uncertainty. The formulation of each of the posterior decision problems is 
based on an updated probabilistic model of the prevailing uncertainties assuming a given 
“outcome of nature”. Therefore the considerations made for posterior decision analysis, 
concerning the treatment of uncertainties are also valid for pre-posterior decision problems. 
 
5.4.5 Use of Bayesian probabilistic networks (BPN) 

The risk assessment and management of natural hazards such as landslide and rockfall events 
requires a systematic and consistent representation and management of information for a 
typically complex system with a large number of constituents or sub-systems. Such 
representation must enable a rational treatment and quantification of the various uncertainties 
discussed earlier; these uncertainties can be associated with the constituents as well as the 
system. The consistent handling of new knowledge about the system and its constituents as 
and when it becomes available and its use in the risk assessment and decision making process 
is also essential. Further, the numerous dependencies and linkages that exist between different 
constituents of the system need to be systematically considered. The above requirements and 
considerations necessitate the use of generic risk models for the assessment and management 
of risks due to natural hazards. The use of Bayesian Probabilistic Networks (BPNs) has 
proven to be efficient in such risk assessment applications (Graf et al., 2009; Faber et al., 
2007; Nishijima and Faber, 2007; Bayraktarli et al., 2006; Bayraktarli et al., 2005; Faber et al. 
2005; Schubert et al, 2005 and Straub, 2005). A brief overview of the principles and use of 
Bayesian Probabilistic Networks is provided below; details can be found in Jensen (2001). 
 
Formally, Bayesian probabilistic networks (BPN) are directed acyclic graphs whose nodes 
represent random variables in the Bayesian sense: they may be observable quantities, latent 
variables, unknown parameters or hypotheses. Edges represent conditional dependencies; 
nodes which are not connected represent variables which are conditionally independent of 
each other. Each node is associated with a probability function that takes as input a particular 
set of values for the node's parent variables and gives the probability of the variable 
represented by the node. Efficient algorithms exist that perform inference and learning in 
BPNs. Using a BPN offers many advantages over traditional methods of determining causal 
relationships. Independence among variables is easy to recognize and isolate while 
conditional relationships are clearly delimited by a directed graph edge: two variables are 
independent if all the paths between them are blocked (given the edges are directional). 
 
 
5.5 OTHER QUANTITATIVE DEA METHODS 

5.5.1 Event tree analysis 

Event tree analysis is a widely used approach in quantitative DEA. This approach is described 
in Section 4.4. 
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5.5.2 Multi criteria decision analysis (MCDA) 

The common purpose of MCDA methods is to evaluate and choose among alternatives based 
on multiple criteria using systematic analysis that overcomes the limitations of unstructured 
individual or group decision-making. According to Linkov et al (2007) MCDA may be 
divided in: 
 

 Value function-based methods (MAVT/MAUT) 
 Outranking methods. 
 Analytical hierarchy process (AHP) 

 
Value function-based method is to model and represent the decision maker’s preferential 
system into a value function V(a), 
 
V(a) = F( V1(a1),…,Vm(am ))         (5.9) 
 
where alternative a is presented as a vector of the evaluation criteria a=(a1,…,am ), ai is the 
assessment of alternative a according to criterion i, and Vi(ai) is the value score of the 
alternative reflecting its performance on criterion i (as a rule, 0≤Vi(ai) ≤100). The most widely 
used form of function F( ) is an additive model: 
 
V(a) = w1 V1(a1) +…+ wm Vm(am )                  (5.10) 

 
wi > 0 , ∑ wi = 1                    (5.11) 
 
where wi, i=1,…,n, are the weights reflecting the relative importance of criteria (or 
corresponding scaling factors. It should be stressed, however, that for a justified 
implementation of the additive model (Equation 5.10) some requirements/axioms of MAVT 
should be held (among them the key ones are the preferential independence requirements). 
MAVT relies on the assumption that the decision-maker is rational (preferring more utility to 
less utility, for example), that the decision-maker has perfect knowledge, and that the 
decision-maker is consistent in his judgments. The goal of decision-makers in this process is 
to maximize the overall value V(a) of alternative a. Uncertainties are considered in value 
based methods by incorporating a non linear value function instead of simple linear 
normalisation the preferences may be expressed with a higher degree of certainty than a linear 
approximation.  
 
A description of the outranking methods can be found in Alvarez (2010). Outranking methods 
are partially compensatory and can better relate to the decision-maker needs, as they are 
adapted to preference structures in certain types of decisions. Since outranking is a partly 
compensatory method, uncertainties may be incorporated within the variation of parameters 
expressing the probability of achieving a certain preference order. 
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5.6 THE DECISION MAKING PROCESS 

5.6.1 Weighing of criteria 

In a formal decision analysis handling of uncertainties is of significant importance. Whereas 
uncertainties in the data material, methodologies and criteria may be handled with various 
analytical processes there is still a subjective part of weighing in decision analysis. This may 
be simple scoring performed by experts in a consensus setting or a formal multi-criteria 
involvement process as described in Sparrevik et al 2011 (Figure 5.6). 
 

 
 

Figure 5.6 Using a multi criteria involvement process for weighing of criteria 
 
5.6.2 Methods for weighing 

At the heart of decision analysis is the idea that by quantifying the preferences about the goals 
rather than the solution, that a more objective, systematic solution can be reached. This 
quantification of the goals is done by the weighting of criteria; by setting which judging 
criteria are most important, we are constructing the framework by which the potential 
solutions will be measured. Several methods can be utilised for weighing: 
 

 Ranking could be considered the basic weight elicitation scheme. In this case each 
criterion a percentage that indicates its importance; the sum of the percentages across 
all criteria must equal 100%.  
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 Pair-wise comparison is another method of weight elicitation which is specific to the 
analytic hierarchy process. In this method, each criterion is compared to another and 
the dominance is assessed. By using a mathematical algorithm the criteria are ranked 
in order. The idea with pair-wise comparison instead of direct ranking is the 
assumption that decision makers are more relaxed in relative comparison than ranking 
in absolute order. Since pair-wise weighing among criteria opens for inconsistency 
this has to be evaluated as a part of the uncertainty analysis by computing the 
inconsistency index. Perfect consistency will give an inconsistency index of 0, 
whereas high numbers indicate high degree of inconsistency. Often a threshold value 
of 0.1 is recommended 
 

 Swing-weighting is an alternative to ranking, but produces similar results. In this 
method people are first asked to arrange the preferential order of criteria by elevating 
one criterion at a time from a bottom level to the highest level of preference. When the 
preference order between criteria is determined the relative preference of each criteria 
is assessed against the highest ranked criteria (given a value of 100) on a 1-100 scale.   
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6 EXAMPLE – MODELLING OF ROCKFALL HAZARDS BASED ON 
A BAYESIAN APPROACH 

6.1 INTRODUCTION 

An example taken from Straub and Schubert (2008) involving the modelling of rockfall 
hazards and design of rockfall protection structures is considered here. 
 
Rockfall is generally considered an inherently uncertain process, i.e., it is not possible to 
deterministically predict the time and the extent of the next event. However, it is possible to 
describe rockfall using a probabilistic model, describing the frequency ( )VH v with which a 

rock of a certain volume V or larger is detached. Because the assessment of rockfall is based 
on limited data and simplified models, the probabilistic model is itself subject to uncertainty 
itself; this can be represented by modelling the parameters of ( )VH v  as random variables. In 

this case, we write ( | )VH v θ  to indicate that the model is defined conditional on the values of 

its parametersθ . This epistemic uncertainty on θ  can be depicted by credible intervals (which 
can be considered as the Bayesian equivalent of confidence intervals) on the exceedance 
frequency curve as demonstrated in Figure 6.1.  
 

 

Figure 6.1 Exceedance frequency – illustrating the difference between epistemic and aleatory 
uncertainty 
 
 
6.2 UNCERTAINTIES IN ROCKFALL HAZARDS 

As with most natural hazards, the uncertainties related to the occurrence of the hazard are 
generally large for rockfall hazards. In the literature, this uncertainty is generally represented 
by an exceedance frequency as illustrated in Figure 6.1, yet without explicit consideration of 
the epistemic uncertainty. Instead it is (implicitly) assumed that the frequency of an event 
with a certain rock volume is a deterministic value, implying that if the site were observed 
over a sufficiently long period, exactly the predicted frequency of rocks would be 
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experienced. Clearly, this is not the case; instead the predicted frequency is a best estimate of 
the true rate of occurrence. 
In the literature, various methods are proposed for identifying the exceedance frequency at a 
specific site. These include: 
 

i) the analysis of historical datasets, e.g., Hungr et al. (1999) or Dussauge-Peisser (2002), 
ii) empirical models which describe hazard as a function of different indicators (observable 

parameters) such as topography and geology, e.g., Budetta (2004) or Baillifard et al. 
(2004), 

iii) phenomenological (mechanical) models, e.g., Jimenez-Rodriguez et al. (2006) or 
Duzgun et al. (2003), and 

iv) expert opinion, e.g., Schubert et al. (2005).  
 
All these methods are useful in a particular context. While methods i) and ii) are generally 
more appropriate for the analysis of larger areas with less accuracy, iii) and iv) are more 
suited for the detailed analysis of a specific site.  
 
Large-scale models (i) and ii) above) are generally based on statistical methods. 
Consequently, it is mathematically convenient to express the exceedance frequency in a 
parametric format. Traditionally, a power law has been applied to describe the relation 
between rock volume V  and the exceedance frequency: 
 

  b
VH v avθ           (6.1) 

 
The statistical parameters of the model characterising the shape of the exceedance frequency 
curve are T[ , ]a bθ . The epistemic uncertainty is included in the analysis by modelling θ  as 

a random vector. Using the probability density function ofθ ,  fΘ θ , the unconditional 

exceedance frequency is computed as: 
 

     V VH v f H v d  Θ

Θ

θ θ θ          (6.2) 

 
There are various sources for epistemic uncertainties in large scale models, preventing an 
exact prediction of the exceedance frequency for a particular site. A brief description of these 
is provided below. 
 
Statistical uncertainty 
The parameters of the large scale models are derived empirically from data sets. Because of 
the limited size of these data sets, the estimated parameters are subject to statistical 
uncertainty. 
 
Measurement uncertainty 
Measurements and recordings of the geological properties are typically subject to uncertainty 
and observations of historical events are often incomplete and biased and must rely on local 
experts. As an example, rocks on a road will generally be reported and documented, but those 
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that missed the road may often not be. Measurement uncertainty also results from derives 
from equipment, operator/procedural and random measurement effects. 
Model uncertainty 
Extrapolation of the statistical models to areas other than those for which observations are 
available leads to additional uncertainty as the geological and topographical characteristics 
will be different for these areas. GIS-based models will take into account some of these 
parameters, but the omitted parameters will lead to an uncertainty in the model predictions. 
Uncertainty also occurs due to the approximations and simplifications inherent in empirical, 
semi-empirical, experimental or theoretical models used to relate measured quantities to non-
measurable numerical parameters used in estimation. Finally, although the power-law is, for 
example, commonly assumed to express exceedance frequency in the case of rockfall hazard, 
it has not been justified by phenomenological considerations. Thus, it is not ensured that the 
parametrical model accurately represents the actual behaviour. 
 
Spatial variability 
The frequency of hazard events varies in space. The observations represent an average over an 
area and the resulting parameter values, therefore, do not reflect the variations from the 
average.  
 
Temporal variability 
The frequency of hazard events varies in time. When working with annual frequencies, the 
seasonal changes do not affect the analysis, but the frequency may change over the years or 
may be dependent on extreme events (e.g., earthquakes). However, in certain instances, e.g., 
when temporal closure of the road is considered as a risk reduction measure, seasonal 
variations must be explicitly addressed by the analysis.  
 
How can these uncertainties be quantified? Statistical uncertainty can be quantified by using 
standard statistical methods such as Bayesian analysis, see, e.g., Coles (2001). Measurement 
uncertainty can generally be estimated when the data collection method is known. 
Unfortunately, no simple analytical method is available for estimating model uncertainties. A 
solution is to rely on expert opinion, i.e., to ask experts about their confidence in the models. 
It is also possible to compare the model with observations which have not been used in the 
calibration of the model (model validation) or to compare different models. Furthermore, it is 
possible to include additional parameters in the formulation of the exceedance frequency. The 
model uncertainties are then reduced while the statistical uncertainties increase, but the latter 
can then be estimated analytically. Coles et al. (2003) demonstrate this for the analysis of 
rainfall data. The spatial and temporal variability can be analysed quantitatively, if data is 
available in sufficiently small scale; a data-set showing the spatial distribution of rockfall 
events is presented in Dussauge-Peisser et al. (2002). Spatial variability can be described by 
the spatial correlation of the relevant characteristics. In most practical cases, however, a 
simplified approach is favourable, whereby smaller areas are determined within which the 
spatial variability can be neglected. Temporal (typically seasonal) variability can be described 
by time-dependent parameters in the exceedance frequency model, corresponding to the 
assumption of the hazard event (e.g. rockfall) following an inhomogeneous Poisson process. 
For small-scale models, the application of the power-law is not always justified, in particular 
if different mechanisms are underlying the detachment of smaller and larger rocks. In such 
cases it might be more appropriate to utilize a non-parametric model in which the rock 



Deliverable D0.3 Rev. No: 2 
Dealing with uncertainties in modelling, prediction, and decision-making Date: 2011-08-02 
 
 
 

 
 
Grant Agreement No.: 226479  Page 54 of 69 
SafeLand - FP7 

volume is divided into a discrete number of intervals (e.g., 10m3 – 50m3) and the model gives 
the annual frequency of rocks for the different volume ranges. 
 
6.3 BAYESIAN ANALYSIS AND UPDATING 

For the modelling of rockfall exposure, Bayesian analysis is particularly useful, as it 
facilitates the consistent combination of different information in a single model. This is 
because the probabilistic model can be updated when new information becomes available. 
Consider the case where rockfall exposure at a particular location is expressed by the model 

( | )VH v θ  with uncertain parametersθ . When new information becomes available (denoted by

z ), the probability distribution of the uncertain parameters can be updated using Bayes’ 
theorem, which in its general form can be written as: 
 

     f L fΘ Θθ z θ z θ   (6.3) 

 

 fΘ θ  is the prior probabilistic model,  fΘ θ z  is the updated model and  L θ z  is the 

likelihood function, which describes the new information. The proportionality constant is 

obtained from the fact that integration of  fΘ θ z  over the entire domain of θ  must yield 

one. The likelihood function is the probability of the observed information given the 
parameters θ , i.e., 
 

   L Prθ z z θ   (6.4) 

 
To demonstrate the derivation of the likelihood function, consider the case where the 
available information is a set of observed detached rocks 1...i n  for a specific mountain 
slope, which are described by their volume iv  and the time period zT  during which they 

occurred. Only rocks with a volume larger than thv  have been recorded (th: threshold). We 

make the following simplifying assumptions: a) that the rockfall follows a homogeneous 
Poisson process as discussed earlier and b) that the observations are free of error (i.e., all 
rocks are recorded). These assumptions hold under particular circumstances only, yet they are 
a reasonable approximation to many real situations and they are suitable for illustrative 
purposes. Under these assumptions, the probability of observing exactly n  rocks with a 
volume larger than thv  is given by the Poisson distribution with parameter ( | )V th zH v Tθ  as: 

 

     Pr exp
!

n

V th z

V th z

H v T
n H v T

n

       
θ

θ θ   (6.5) 

 
Given that a rock with volume larger than thv  has detached, the likelihood of its volume being 

iv  is proportional to h ( | ) / H ( | )V i V thv vθ θ  for i thv v . Because all observations are assumed 

independent events, the likelihood function is obtained by multiplying these terms. The 
likelihood function representing the observation of n rocks with volumes 1... nv v  on the 

considered mountain area is then: 
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    θ z θ θ        (6.6) 

 
( | )V ih v θ  is the annual frequency density of V . Note that the observations apparently must 

relate to the frequency density and not the probability density, because we cannot observe just 
the largest rock that has fallen during a certain period, rather, the observed rocks may all be 
from the same time period. 
 
 
6.4 UNCERTAINTIES IN ROCKFALL TRAJECTORY 

Once a rock is released, its trajectory is mainly determined by the topography, its mode of 
motion (free fall, rolling bouncing or sliding) and the characteristics of the surfaces of the 
rock and the ground. All these factors contribute to the uncertainty in the prediction of the 
trajectory. Existing numerical tools model this uncertainty by means of crude Monte Carlo 
simulation (MCS); an overview is provided by Guzzetti et al. (2002). There exist two- or 
three-dimensional models and there are differences in the physical representation of the rock: 
The so called lumped mass approach represents the rock by a single mass point, neglecting 
the geometry of the stone. The rigid body approach models the stone by idealized geometries 
(e.g., cylinders, spheres or a cuboidal shape, Ettlin 2006) with varying physical and material 
properties. Hybrid models combine a lumped mass approach to simulate the free fall with a 
rigid body approach to simulate the contact with the ground surface. Finally, different models 
are used to simulate the impact of the rock on the ground (Dorren, 2003), a simple approach 
being the use of coefficients of restitution (Stevens 1998). The impact is the most intricate 
part of the falling process and its modelling is associated with large uncertainties. The 
modelling cannot account for the variability in the ground material (particularly in zones 
covered with vegetation) and the local geometry of the ground and the rock. These 
uncertainties are inherent to the model and can therefore be considered as aleatory. In 
addition, there is an epistemic uncertainty because of the limited basis for estimating the 
model parameters (see e.g., Robotham et al. (1995), Azzoni et al. (1995) and Chau et al. 
(2002) for estimation of coefficients of restitution). Additional epistemic uncertainty is due to 
the simplified modelling of the slope profile at the impact location. In many applications, the 
profile surface in the models is generated from a digital elevation model (DEM) with limited 
resolution and between the points provided by the DEM the terrain is assumed to be linear. If 
the model is 2-dimensional, the reduction to a single plane is an additional source of epistemic 
uncertainty. 
 
The outcome of a two-dimensional rockfall model is illustrated in Figure 6.2. In this example, 
the relevant numerical result that will be utilized for risk assessment is the probability density 
function (PDF) of the energy of the rocks when reaching the road. This distribution should be 
evaluated conditional on the rock volume, ( | )Ef e v , for different values of v . This can then be 

combined with the distribution representing the rock detachment. Available rockfall analysis 
software typically allow entering the detached volume as a Normal distributed random 
variable, but because the volume of detached rocks is generally not Normal distributed, 
results obtained with this assumption cannot be used for risk assessment directly. 
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Figure 6.2 Illustration of the rockfall trajectory modelling. 
 
MCS in existing rockfall trajectory analysis tools accounts only for the aleatory uncertainty. 
However, while it is important to be aware of the additional epistemic uncertainty associated 
with these models, for most practical applications, the error associated with neglecting this 
uncertainty is tolerable. This is due to the fact that in the analysis of rockfall trajectories, 
unlike in the modelling of rockfall exposure, the probability of extreme events is of less 
importance, and that the middle range of the distribution is less affected by the epistemic 
uncertainties. 
 
 
6.5 UNCERTAINTY IN THE PERFORMANCE OF ROCKFALL PROTECTION 

STRUCTURES 

Rockfall protection structures such as flexible nets or fixed galleries can stop the rocks, but 
their capacity is limited. This capacity, denoted by R, can be quantified in terms of the amount 
of energy that the structure can absorb. R depends on the type of structure, but also on the 
characteristics of the rock beyond the impact energy. The uncertainty in the capacity is 
considered by modelling R as a random variable, represented by its PDF conditional on the 
rock volume, ( | )Rf r v . Hereby, the velocity of the rock at the impact is determined as a 

function of the energy and the volume. ( | )Rf r v  should include both epistemic and aleatory 

uncertainty related to the structural capacity. Structural reliability analysis can be used to 
evaluate ( | )Rf r v  for a given type of structure, Schubert et al. (2005). Alternatively, for 

standard protection systems, ( | )Rf r v  can also be estimated from tests. However, because of 

their cost, the number of tests is often limited and, therefore, test results should be combined 
with a reliability analysis to obtain a probabilistic estimate of the capacity. 
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6.6 UNCERTAINTIES IN ROCKFALL ROBUSTNESS 

A measure of how a system such as a rockfall protection structure reacts to a hazard or a 
damage or failure event can be expressed as the robustness of the system. The robustness of 
such a system can be accounted for by estimating the expected consequences for a given 
failure event following the approach described in JCSS (2008). As an example, the expected 
number of fatalities and injuries is evaluated by multiplying the probability that a number of 
people are present at the location at the time of a rockfall with the probability that somebody 
is killed or injured by the rock. Those probabilities represent aleatory uncertainties. There is 
an uncertainty as to the values of these probabilities, which is of an epistemic nature (it could 
be reduced by collecting additional data), but because only the expected number of fatalities 
and injuries enters the computation, the computed risk generally will not be very sensitive to 
these epistemic uncertainties. In most instances they can be neglected, as is done in practice. 
An important part of system robustness modelling is the assessment of so-called “user costs”, 
representing the socio-economical costs inflicted by the temporary disuse of the considered 
system, typically a transportation link. The user costs as assessed by road authorities exhibit 
large differences (e.g. Nash, 2003). However, it must not be concluded that these differences 
are due to epistemic uncertainty; rather, they are caused by different model assumptions. 
Therefore, this problem must be addressed by the decision maker, who must determine the 
model assumptions that represent his/her preferences. 
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7 SUMMARY AND CONCLUSIONS 

A combination of inherent, modelling and statistical uncertainties needs to be dealt with in 
any typical decision making problem. This deliverable report provides a review of the state-
of-the-art in dealing with uncertainties in the modelling, prediction, and decision-making 
processes. The different types and sources of uncertainties that are encountered in modelling, 
prediction and decision making are covered in Chapter 2 of this report. Chapter 3 gives 
generic guidelines for selecting the appropriate method for the treatment of uncertainties. The 
guidelines give information on which techniques can be used for the formulation of 
uncertainty for input parameters and which methods are applicable to propagate the 
uncertainty from input to output parameters. A brief review of the most relevant techniques 
and propagation methods is given in Chapter 4. Chapter 5 contains a description of methods 
to deal with uncertainty in decision making; here, an engineering interpretation of uncertainty 
is first provided with the purpose of providing a basis for the evaluation of the consistency 
and appropriateness of the probabilistic modelling as applied in engineering decision analysis. 
Thereafter a summary presentation of the prior, the posterior and the pre-posterior Bayesian 
decision analysis is provided given, followed by an outline of the consistent treatment of 
uncertainties in probability updating problems as encountered in posterior and pre-posterior 
decision analysis. Finally, an example on the modelling and management of uncertainties 
associated with rockfall hazards following a Bayesian approach is provided in Chapter 6. 
 
Even though in many cases it is not absolutely necessary to consider the detailed 
characteristics of the uncertainties prevailing in decision problems, it is always useful and 
instructive to think through the process how uncertainties fundamentally change 
characteristics as function of both the point in time where they are looked upon and as 
function of the “scale” of the modelling used to represent them. Understanding is a 
prerequisite for consistent treatment of uncertainties. As an example - choosing a complicated 
model with many parameters for the description of uncertain phenomena may result in models 
with significant epistemic (statistical) uncertainties as opposed to more simple models 
dominated by aleatory and epistemic (model) uncertainties. The model dominated by 
epistemic uncertainties has the potential for reducing the uncertainties through updating 
following a Bayesian approach; however this should not be taken to imply that a complicated 
model with many uncertain parameters (hence dominated by epistemic uncertainty) should be 
chosen over a simpler model dominated by aleatory uncertainty in all cases. The advantage 
offered in the former case may be overridden by other considerations such as the objectives 
and context of the analysis and budget constraints. A holistic approach considering all 
relevant aspects of the decision problem at hand and treatment of the underlying uncertainties 
in a rational manner is hence advised. 
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