
Student Simen Bjerkemyr Magnussen

Rate effect on Halden silt

Triaxial testing with different rates of loading

Trondheim, December 2019

PROJECT THESIS: TBA4510

Main supervisor: Professor Jean-Sebastien L’Heureux

Co-supervisor: Dr. Priscilla Paniagua Lopez

Department of Civil and Transport Engineering

Norwegian University of Science and Technology (NTNU)



i

Preface

This project thesis in geotechnics is written in the course TBA 4510 - Geotechnical specialization

project which is part of the MSc Geotechnics and Geohazards program at NTNU. The project

is carried out during the autumn semester of 2019, and is executed in cooperation with NGI-

Norwegian Geotechnical Institute. Before this project could get started, I had to learn my way

around the labs and how the triaxial apparatus worked. I had to start from scratch and learn

all the practical parts of running a triaxial test by experimenting with dummy samples over a

few weeks with help from the geotechnical staff, in addition to how to process the data. This

impacted the available time to write the report.

Trondheim, 2019-12-15

Simen Bjerkemyr Magnussen



ii

Acknowledgment

I would like to thank Professor Jean-Sebastien L’Heureux at NTNU for overseeing this project.

I would also like to thank Dr. Ana Priscilla Paniagua Lopez at NGI for being a great supervisor

and for helping me with all my questions. A special thanks to Karl Ivar Volden Kvisvik for being

pacient when he showed me how to use the lab equipment in the early stages of this project.

S.B.M.



iii

Summary and Conclusions

This project describes the methods and results from running triaxial tests with different loading

rates on a silt material from Halden, Norway. The test site in Halden have been investigated

for several years, and has been well characterized by other testing methods. By comparing the

obtained results during this project with older results, an evaluation of the impact the load-

ing rate have on shear strength is determined. This project mainly explains the triaxial testing

procedure, the results from the tests and an evaluation of the undrained shear strength of the

material. The sample from Halden has been stored cold in a fridge for over two years, and had

to be trimmed down to proper dimensions before testing could occur. A higher undrained shear

strength is observed when the samples are loaded with a higher rate. These values seemed to

be slightly too high for use as deign values, and should be neglected. The samples sheared at

a lower rate seems to coincide well with the previous results from the test site. The undrained

shear strength is estimated to be around 100 kPa at around 15.25m where the sample is taken

from.
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Chapter 1

Introduction

In Halden, Norway there is a permanent geotechnical test site which is used for silt measure-

ments in situ and sample collecting. These test sites are meant to provide valuable information

for public authorities, industries and research organizations. The Halden test site is located in

the southeast of Norway, close to the Swedish boarder and approximately 120km south of Oslo

seen in Figure 1.1. There has been performed several different in situ tests on this site (CPTU,

SCPT, RCPTU, SDMT and other tests). Samples has also been collected using various samplers.

In this project, the block sample HALB04 collected at 15.25m depth will be investigated in the

lab. Triaxial tests will be performed to investigate the effect of load applied at different rates.

The reason to carry out this project is that the silt is a genuinely difficult material to evaluate,

especially for very low plasticity to non-plastic silt. In addition to this, there is no permanent

framework to evaluate the sample quality. The samples of intermediate soils of high quality is

often troublesome to obtain. Furthermore, there is quite little information regarding the topic

of selecting the fitting engineering properties for practical use.

1.1 Background

1.1.1 Halden test site

As of 2011, the test site in Halden has been used for different geotechnical soil testing. The site

contains layers of sand, clayey silt and clay. In this report, only the silt is to be investigated. The
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test site is located in the western part of the city Halden. As of now, the site is a public park

owned by the municipality located close to a residential area. The total area of the site is about

6000 m2 and the topography is mainly flat. As seen in Figure 1.1 there is adequate vegetation in

the area. Right next to the site to the north and west, a ridge ascends up about 15 meters. On the

other, to the east, another ridge rises up about 8 meters. This will lead the precipitation down

towards the test site and influence the ground conditions to a certain amount.

Figure 1.1: Location of the Halden test site in Norway

1.1.2 Problem Formulation

This project aims to investigate the effect of different loading rates on the silt material obtained

by block sampling in Halden, Norway in a triaxial test. The rates used in this project is set to

1.5% and 15% Berre (1982). The rate is found by choosing a percentage which according to ISO

(2018) is within acceptable range, and dividing this percentage by 60 minutes. The results from

using 1.5% and 15% is shown in Table 1.1 below. 15% is a rather extreme value, and will shear

the sample in a short amount of time. The reason for choosing such a high value is to determine

if a rate of this magnitude will influence the resulting undrained shear strength.
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Rate Velocity [mm/min]
1.5% 0.025
15% 0.25

Table 1.1: Different rates used in the laboratory

The sample is being tested with a CIUc-test, which is an Isotropic Consolidated undrained test.

This means that the sample is consolidated with the axial stress σ1 is equal to the radial stress

σ3, which is a very common test method for silts.

1.1.3 Literature review

This project is mainly an addition to the results from the journal article published by AIMS Geo-

sciences, named The Halden research site: geotechnical characterization of a post glacial silt

Blaker et al. (2019). This report explains the characterization of the test site, sampling meth-

ods and contains results from several testing methods from the site. The block sample tested in

this project is retrieved from the same site, and will be compared to the results from the report.

Furthermore, preparing silt for triaxial testing without significant disturbance is difficult as de-

scribed by Fleming and Duncan (1990);Høeg et al. (2000). Disturbance of the sample will influ-

ence the measured shear strength and obscure the past consolidation pressure in consolidation

tests Brandon et al. (2006). Sample quality should always be evaluated when advanced tests is

conducted in the laboratory. If the tests are performed on poor quality samples, it could affect

the engineering soil parameters which could lead to unsafe geotechnical design Blaker et al.

(2019).

The testing conducted in this report follows standards and guidelines commonly used for lab-

oratory testing. The Norwegian standard NS-EN ISO 17892-9:2018 ISO (2018) is the main doc-

ument securing the correct way to test the silt samples in the triaxial apparatus. Further, the

article published by NGI Berre (1982), Triaxial Testing at the Norwegian Geotechnical Institute is

used in addition to the standard to compliment the testing procedures. The tests in this project

will be performed under these conditions, since the journal article published by AIMS Geo-

sciences is based on the procedures from the NGI article in addition to the standard.
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1.2 Objectives

The main objectives of this project are:

1. To conduct a proper literature study for a better understanding of silts

2. Run triaxial tests in the lab on the retrieved samples

3. Interpret the results and compare with other tests from the area

1.3 Limitations

Due to the rather short amount of time this report has to be constructed in, only a few samples

will be tested. Originally it was planned to run nine tests, with three different loading rates. This

is limited to four tests with two loading rates. The desired number of tests would have made a

better basis for comparison.

The collected sample has been stored cold in the fridge for quite some time. This could influence

the water content in the sample and affect the testing results. This will most likely be seen when

the tests is complete and the results are compared with other data.

1.4 Approach

The main tasks in this project is shown in the list below:

1. Learn how the triaxial apparatus works

2. Create test samples from the block

3. Running triaxial tests on the obtained samples

4. Interpret and compare results
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Method

In this chapter, the methods used in the laboratory is explained.

2.1 The block sample

The block sample was collected using a Sherbrooke block sampler with Φ250 mm. The block

was taken from 15.15-15.5 meter below the surface and has been stored in a fridge after trans-

portation to Trondheim, Norway. The block has to be cut in different parts to be able to tested.

Since the triaxial apparatus used in this project requires a final sample height of 10 cm, the block

is split in half. By cutting the block in half, ten samples can be cut out of the block for testing.

First the sample was taken out of the container, and the plastic film was removed. The first ob-

servation is that the outside of the block seemed quite dry. The material was easy to fracture

simply by touching it. The state of the block sample can be observed in Figure 2.1. The crust at

the top and the sides were completely dry. Shell fragments could be seen when the top of the

block were examined further.

First, the block were trimmed by 3 cm at the top. A circle of about 2 cm around the edges was

rather dry. The block was in good condition apart from the dry edge. Furthermore, there was

observed a small black circle with some organic material. There was also detected that the block

contained a substantially amount of shells. One of the shells in the top was quite big compared

6
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to most of the other inspected shells. When the block was trimmed the shells got stuck in the

steel wire, which made the process somewhat difficult. The larger shell made quite the hole in

the block and disturbed the sample a bit.

Figure 2.1: The block sample used in the tests

From Figure 2.2 it is possible to witness the V-shaped mark were the shell was placed. The dark

organic material can also be seen.

Further, the block sample was split in half for a total height of 12 cm. The bottom half of the

block were put back in the fridge for storage. The other half was first cut in half circles. One

piece were cut out from the half circle and put in the soil sample trimming device. The other

parts were concealed with plastic wrapping and the placed back in the fridge. During the testing
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period, samples were taken out of the fridge only when needed. This was done to secure that

the samples was not dried out between test preparations.

Figure 2.2: The block sample after trimming at the top

2.2 Trimming the samples from the block

The triaxial apparatus requires a certain geometry of the samples. The main goal is to trim the

sample as circular as possible. To be able to accomplish this, the samples were put in a soil

sample trimming device. The device was adjusted to a diameter of 54 mm which is one of the

preferred sample diameters for several different institutions in Norway Vegdirektoratet (2014).

The sample piece is first roughly trimmed at the edges to get rid of most of the unnecessary
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parts. Then the sample is placed on to the trimming apparatus and secured by lowering the top

plate down on to the sample. The top plate is screwed tight so the sample can not move in any

directions when the cutting is performed.

For cutting of the sample, the same steel wire is used. The steel wire is dragged along the ad-

justed steel plates in the apparatus which is there to make sure the sample us cut equal each

time. When the sample is cut in one direction, the sample is turned simply by spinning it as

both the top- and bottom plate can be rotated. The process continues until the sample have

achieved satisfactory shape. The results from cutting and trimming of the sample can be seen

in Figure 2.3 and Figure 2.4 below.

Figure 2.3: Piece cut out from the block Figure 2.4: Sample after trimming on the sides

Further, the sample is placed in a steel casing which is 10 cm long. The top and the bottom of

the sample is trimmed simply by dragging the steel wire carefully along the edges of the steel

casing. It is always kept track of which side of the sample which was facing upwards in-situ. The

sample is then built in to the triaxial apparatus in the same direction as it had in-situ. After the

trimming of the sample is completed, a visual inspection of the sample was conducted. This is

done to make sure that the sample is not disturbed in any way.
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2.3 Preparing the triaxial apparatus

Before the sample is placed into the triaxial apparatus, some preparations were made. First, the

pressure systems which regulate the cell- and back pressures is filled with de-aired water. Then

the "fast empty" function on the pressure systems is used to clean out the drainage tubes in

the top cap and the bottom pedestal, in case there is some of residue from previous tests. It is

also important to make sure that the O-ring in the pedestal and the pedestal itself is clean, to

prevent any leakage. Furthermore, the porous discs is cleaned and saturated in a container with

de-aired water. Filter paper is cut out in 54 mm circular shapes and saturated, and the "drainage

paper" used around the side of the sample is saturated as well. Prior to each test, all the testing

equipment was given a visual inspection to make sure there was no damages to the system and

preparation equipment.

2.4 Building the sample into the triaxial apparatus

The sample is trimmed down to the required size and shape. The next step is to build in the

sample into the triaxial apparatus. This is executed as described in NS-EN ISO 17892-9:2018

ISO (2018), to make sure that the procedure is done equally each time. The steps relevant to this

report regarding sample mounting is listed below:

1. Applied grease to the top cap and the pedestal to make sure the rubber membrane is simple

to remove after the test is completed.

2. The rubber membrane was fitted onto the membrane stretcher with the four O-rings, be-

fore the membrane stretcher was connected to an air compressor.

3. Filter paper was placed on the top and bottom of the sample, in addition to the filter paper

on the sides.

4. The pedestal was filled with a water film using the pressure device, before the porous disc

was slided onto the pedestal to keep air out of the system.

5. The sample is placed on the pedestal in the in-situ direction.
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6. The air compressor is turned on, and the membrane stretcher is slided over the sample

using a steel rod which is screwed into the pedestal. When the membrane stretcher is cov-

ering the sample and locked in position, the membrane is pulled down onto the pedestal,

followed by the O-rings.

7. The porous disc is then placed on top of the sample, followed by the top cap. The mem-

brane is pulled onto the top cap followed by the last two O-rings.

8. The membrane stretcher is then dismantled and the sample is ready to be covered by the

triaxial cell.

The result from the building into the apparatus can be observed in Figure 2.5 below:

Figure 2.5: The sample prepared for testing
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This process is carried out with care to make sure the sample is not disturbed during installment.

A new rubber membrane was used in every test to make sure each sample were tested in the

same conditions.

2.5 Final preparations of the triaxial apparatus

After the triaxial cell is mounted and fastened properly, and the piston is lowered to a point were

it does not have contact with the top cap, the filling of water in to the cell is performed. When

the water level reaches the midpoint on the sample, the pressures is set to zero on the pressure

devices to make sure this is the reference point. The pore pressure is set to zero as well. When

the pressures is zero, the filling of the cell is continued. When the water reaches the top, the air

valves is tightened one by one until all the air is out of the cell.

The next step is to get rid of all the air in the system (tubes). First the cell pressure is increased

to 10 kPa. Then the valves for the top cap and the pedestal is opened separately, and water flows

through the tubes using gravity. When the air bubbles can not be observed after a short period

of time, the air is out of the system. Now the sample is ready to get saturated.

2.6 Saturation of sample

Effective stress triaxial tests (CU) requires that the sample is saturated for testing Gawen (2017).This

is done to get reliable pore pressure measurements due to no air in the specimen. The option

"Saturation ramp" in the computer program is now chosen to make sure that the sample get

completely saturated. The saturation is checked with a following "B-check". The B-value is cal-

culated based on the following formula in ISO (2018):

B = ∆U

∆σ′
c

(2.1)

Where:
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∆U = Change in pore pressure

∆σ′
3 = Change in confining pressure

To be able to start running the consolidation phase, a B-check is conducted. The B-value should

be 0.95 ISO (2018) or greater within a given time frame during the B-check. The saturation ramps

usually requires a few tests to be able to reach the appropriate B-value. The saturation ramps

was in this project increased with intervals of 50 kPa. Both the cell- and back pressure has to

be increased by the same value. The cell pressure was always kept 10 kPa higher than the back

pressure. During all four conducted tests, the B-value was satisfied when the cell- and back

pressures exceeded around 250 kPa and 240 kPa respectively.

2.7 Consolidation of sample

After the required B-value is obtained, the consolidation phase was initiated. To be able to run

consolidation, the mean effective in-situ stress must be determined. This was already deter-

mined in the NGTS project.

The mean effective stress was read out from Figure 6 in Blaker et al. (2019) to be ∼ 170 kPa. This

value is then the difference between the back pressure and the cell pressure in the consolidation

phase. The duration of the consolidation phase was a minimum of 24 hours to ensure that

the samples was given enough time to return to its natural state. Furthermore, the tests was

performed isotropically meaning the stresses inn all directions are the same (σ1 =σ3).

Since this test is carried out as an effective stress test the sample will be consolidated to an

effective pressure. In this test, the pore pressure will be replaced by the back pressure to be able

to define the effective stresses. Once the mean effective in-situ stress is applied, excess pore

pressure will develop in the sample. During the consolidation phase, the excess pore pressure

will dissipate out of the sample and decrease its volume. This process is complete when the

change in volume is less than 0.1% of the sample volume per hour and 95% of the excess pore

pressure have dissipated ISO (2018). At this point the pore pressure is similar or equal to the back
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pressure, and is used to calculate the effective stress conditions in the sample Gawen (2017).

2.8 Shearing of sample

When the requirements for the consolidation phase were met, the shear phase was initiated. In

the shear phase the axial stressσ1 is gradually increased while the confining pressureσ3 remains

constant. The increase in axial stress is achieved by moving the piston into the triaxial cell with

a constant rate. This process continues until failure occur. When the sample reaches failure,

the maximum shear stress the sample can take is determined. The test will proceed until 15%

strain is reached according to ISO (2018). Figure 2.6 below illustrates a successful shear test. The

failure line is clearly visible through the rubber membrane.

Figure 2.6: The sample after complete shearing
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The loading rate is determined before the initiation of the shear test. The chosen velocities used

in this project is described in Table 1.1 in chapter 1.1.2. The shear test was performed undrained,

meaning no water is allowed to drain out of the sample. The volume of the sample will remain

constant during testing. However, the geometry of the sample will change.

From the shear test, the parameters φ (friction angle), c’ (cohesion) and Su (undrained shear

strength) can be established. These parameters are important regarding geotechnical engineer-

ing, hence it is crucial to estimate as accurate as possible.
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Results

3.1 Water content

The water content is found by weighing the material before and after drying. The material used

in these measurements were collected from various points in the trimmed block. Immediately

after the sample is retrieved, the sample is placed in a bowl, weighed and put in an oven at 105◦

for 24 hours. The samples is weighed again after drying. Then Equation 3.1 found in Sandven

et al. (2015) is used to calculate the water content:

w = m −ms

ms
∗100% (3.1)

Where:

w = water content [%]

m = Mass of wet sample minus weight of bowl [g]

ms = Mass of dry sample minus weight of bowl [g]

Three samples were collected for water content measurements in total from various points in

the top half of the block sample. The water content found in this test along with the previously

found water contents from the surface and down to is presented in Table 3.1 below:

16
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Depth [m] Water content [%]
2-4 30-35
4-8 27-32

8-12 24-32
12-15 19-28

Obtained values from the sample
15.25 19.5-22.5

Table 3.1: Water contents with depth in the same borehole the sample in this project is retrieved from.

3.2 Undrained shear strength

The undrained shear strength is one of the most critical parameters in geotechnical engineer-

ing to estimate correctly. Relevant plots is conducted by using Microsoft Excel, and the shear

strength can be determined.

The tests clearly shows a strong dilative behavior after the initial contraction during shearing.

It can be challenging to determine the undrained shear strength for dilating silts since the test

results does not provide a peak shear strength. The report written by Blaker et al. (2019) suggests

three different methods for determination of the undrained shear strength, which will be used

in this report. By doing this, it is possible to compare results and investigate if the shear rate will

influence the results. Brandon et al. (2006) describes the methods and is explained below:

(a) Su = q f at the maximum pore pressure umax

(b) Su = q f at the point where Skempton’s pore pressure parameter A=0 (A=(∆u −∆σ3)/(∆σ1 −
∆σ3))

(c) Su = q f at a limiting axial strain ε f = 4%

Method (a) is the most conservative, as the shear stress at this point is not fully mobilized and

lays below the failure line determined in the p’q-plot. Method (b) and (c) gives much higher

values for the shear strength, and method (c) in particular gives a wider spread in the results.

Thereby a combination of the methods (a) and (b) is used to interpret the results. The Figures

below displays the relevant obtained plots used to interpret the undrained shear strength.

Method (a) is describes further in this section. Figure 3.1 shows strain plotted versus ∆U . By



CHAPTER 3. RESULTS 18

reading the graph where the highest pore pressure is obtained, the corresponding deviatoric

stress is found in Figure 3.2.The undrained shear strength is found by dividing the deviatoric

stress by 2. The deviatoric stress is found using Equation 3.2:

q =σ1 −σ3 (3.2)

The results from previous tests and the tests performed in this project is listed in Table 3.2 and

Table 3.3 below:

Depth [m] Su[kPa]
5 35

8.4 45
11.5 48
12.5 59
13.6 63
14.5 72

Table 3.2: Shear strength with depth using method (a) from previous tests

The results performed in this project at 15.25m is listed below:

Sample Rate [%] Su

S1A 1.5 94.5
S1B 1.5 80
S2A 15 126
S2B 15 96

Table 3.3: Su using method (a)
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Figure 3.1: Plot showing Strain versus the change in pore pressure

Method (c) is performed by using Figure 3.2. The undrained shear strength should normally be

read at 5% strain as in Blaker et al. (2019), but three of the tests did not reach 5%. This lead to

the decision of using 4% instead. The values from the previous tests is collected from Figure 26.

(c) in Blaker et al. (2019) The results from using method (c) from previous tests is found in Table

and results from this project is found in Table below:

Depth [m] Su[kPa]
5 54

8.4 62
11.5 71
12.5 98
13.6 131
14.5 177

Table 3.4: Su with depth using method (c) from previous tests

The results performed in this project at 15.25m is listed below:
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Sample Rate [%] Su

S1A 1.5 114
S1B 1.5 156
S2A 15 234
S2B 15 211.5

Table 3.5: Su using method (c)

Figure 3.2: Plot showing strain versus the deviatoric stress
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Figure 3.3: Plot showing the effective mean stress versus the deviatoric stress

Method (c) is found using the S-t plot. The point where A=0 is located using Equation 3.3 below:

A = ∆U

∆σ3
= 0 (3.3)

The deviatoric stress is read out at this point and divided by 2. Results from previous tests is

found in Table 3.6 below:

Depth [m] Su[kPa]
5 58

8.4 70
11.5 82
12.5 94
13.6 103
14.5 111

Table 3.6: Su with depth using method (b) from previous tests

The results performed in this project at 15.25m is listed below:
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Sample Rate [%] Su

S1A 1.5 130
S1B 1.5 208
S2A 15 225
S2B 15 210

Table 3.7: Su using method (b)

Figure 3.4: Plot showing S, center of the Mohr circle and t, radius of the Mohr circle
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3.3 Friction angle

The friction angle is obtained using both S-t and p’-q plots. Equations for the different parame-

ters is collected from Nordal (2019) listed below:

p ′ = σ′
1 +2∗σ′

3

3
(3.4)

q =σ1 −σ3 (3.5)

S = σ1 +σ3

2
(3.6)

t = σ1 −σ3

2
(3.7)

The friction angle is found by estimating the different inclinations of the failure lines for each

test. The different plots have different methods of finding these. By using the p’-q plot, the

friction angle have to be estimated by finding the inclination M. M is based upon the following

equation since σ2 =σ3 during constant radial pressure:

M = 6∗ sinρ

3− sinρ
(3.8)

However, since the failure line is known, the M-value will be used to back-calculate the friction

angle. By using the following method, the friction angle is estimated:

Friction angle ρ = tan−1(
y

x
) (3.9)

M = tanρ (3.10)

φ= sin−1(
3∗M

6+M
) (3.11)

Where x and y is the change in length and height of the failure line respectively.
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The friction angle is also estimated from the S-t plot. The inclination of the failure line is in this

case found using the following equation:

φ= sin−1(
y

x
) (3.12)

Both methods/calculations should yield the same friction angle. When both plots gives the same

friction angle, it is assumed that the calculations is performed correctly. The excpected value for

Norwegian silts is 32-35 degrees Long et al. (2010). Previous tests at the Halden site has indicated

a friction angle of 36 degrees Blaker et al. (2019). The values obtained in this project is found in

Table 3.8:

Depth [m] φ [degrees]
5 36
8 39.5

11.5 36
12.5 35.5
13.6 36
14.5 36.5

Table 3.8: φ with depth from previous tests

The friction angles found in this project at 15.25m is presented in Table 3.9:

Sample φ (p’-q) φ (S-t)
S1A 27.3 27.3
S1B 33.6 33.6
S2A 37.9 37.9
S2B 36.5 36.5

Table 3.9: Su using method (b)
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Discussion

4.1 Water content

One can observe a good match by comparing the obtained results with the results described in

Figure 7. (b) in Blaker et al. (2019) shown in Table 3.1. Even though the block sample have been

stored in a fridge over a longer period of time, the sample has managed to stay in good shape.

The obtained values is in the range where one can expect them to be.

4.2 Interpretation of the undrained shear strength

Using method (a): The results indicates that a rate of 1.5% leads to a good match with what

is to be expected with this method. By comparing the obtained values with Table 3.2, one can

observe a reasonably good match. By investigating Figure 26. (a) in Blaker et al. (2019), an ob-

servation of a high increase in the Su value occurs around 15m. However, by inspecting the

values from the samples sheared at 15%, the Su increases significantly. Further, the values are

more scattered. A higher value for sample 2B was expected. This could indicate that one of the

samples is somewhat disturbed, or the triaxial apparatus did not work properly. This method is

rather conservative, and the values should be used together with an additional method to get a

more suited Su at 15.25m.

25



CHAPTER 4. DISCUSSION 26

Using method (b): The results shown in Table 3.7 indicates a somewhat expected Su . By using

this method, the Su is interpreted fairly close to the point where the failure occurs. By combining

this method with method (a), a reasonably Su value could be determined. By inspecting Figure

3.4, one can observe a strange behavior for sample 1B. The sample was expected to have a lower

value as sample 1A. Something might have gone wrong during the test, or the triaxial apparatus

could have made a mistake. However, sample 1A have a very good match with Figure 26. (b) in

Blaker et al. (2019). Further, the samples sheared at 15% gives a higher value which is expected.

They have a small variation, which could indicate some disturbance in the samples or a mistake

made by the triaxial apparatus. The results would be too radical to use in design values.

Using method (c) The results shown in Table 3.5 does not match very well with the expected

values. The values for the samples sheared at 1.5% is lower than the typical values. Further,

the results have a rather wide spread and is not as reliable as for the other two methods. The

values is most likely lower than the expected, because the results from Blaker et al. (2019) are

interpreted with 5% strain instead of 4%. Furthermore, the samples sheared at 15% results in a

higher Su again using this method. The results are higher than expected, even though the Su is

interpreted at 4%. Overall, this method should not be used to decide the Su in this case, as the

results varies too much and can not be trusted to some degree.

Overall results observed in the plots: By investigating Figure 3.1, a strange behavior in sample

1B is displayed. The peak value is higher than the values for the samples sheared at 15%, which

should not be the case. This might be due to some disturbance in the sample, a measuring error

in the equipment or a personal mistake when running the test. This behavior can further be

seen in Figure 3.2, where the blue line (1B) is almost as high as the samples sheared at 15%.

Further, the Figures 3.3 and 3.4 indicates that sample 1B is resulting in a higher Su .

4.3 Interpreting the friction angle

The friction angle is found by plotting the failure lines in Figure 3.3 and 3.4. The results from

doing this can be seen in 3.9. The friction angle for sample 1A is slightly lower than what is
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expected. Again the reason for this could be disturbance in the sample or some error with the

measurements. Sample 1B shows a better fit with what is to be expected. The two samples

sheared at 15% gives a slightly higher friction angle, but is still in the range of Norwegian silts.



Chapter 5

Summary and Recommendations for

Further Work

5.1 Summary and Conclusions

The main object of this project was to learn how the triaxial apparatus work, and to investigate

the impact loading rates have on silt material. By preparing samples as explained in Chapter 2

and program the equipment, triaxial tests were performed on a silt from Norway. By compar-

ing the obtained results with the results presented in Blaker et al. (2019), an estimation of the

undrained shear strength is concluded.

The water content was found to be 19.5−22.5% at 15.25m depth. This coincides very well with

the previous obtained value. Even though the sample has been stored for over 2 years, the water

content has stayed unchanged. The edge of the sample seen in Figure 2.2 shows that the sample

had dried to some extent, but the water content measured in various points in the middle of the

sample turned out to be unchanged.

Three method’s for estimating the undrained shear strength was used. Since method (c) lead

to scattered results, the first two methods is used with care. Further, the values obtained by

using a loading rate of 15% is estimated to be to high for practical use. The shear strength was

determined to be higher by more rapid loading and the results from these tests is estimated to

28
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be too radical.

The shear strength should be determined by looking closer at the results from the samples

sheared at 1.5%. By doing this, an Su of ∼ 100 kPa seems reasonable at 15.25m depth. This

value may be a bit conservative, but determination of shear strength in silts is a delicate matter

and should be performed diligently.

5.2 Recommendations for Further Work

For further work more tests should be conducted for a better basis and understanding of the

interpreted results. At least one or more additional tests for each chosen rate, as well as three

or more tests on an additional rate. The last rate should be 0.15%, or 0.0025 mm/min. This will

lead to a better understanding of the impact the loading rate have on the material. There would

be interesting to investigate if the Su get an even lower value than the results in this project, by

choosing a loading rate which is significantly lower.

Also, even more training in using a triaxial apparatus would be favorable, to make sure the tests

is run correctly. The available time for conducting this project, including laboratory work and

writing this report was rather short. The triaxial apparatus is a complex device to learn, and

more time should be designated to learn this process properly to eliminate mistakes that could

have been made.



Appendix A

Acronyms

CPTU, SCPT, RCPT Cone Penetration Test

SDMT Seismic flat dilatometer

CRS Constant Rate of Strain

CIUC-test Consolidated Isotropic Undrained Compression test

Su Undrained shear strength

u Pore pressure

φ Friction angle

ε Strain

σ′,σ Effective stress, total stress

30
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Obtained plots from tests

B.1 Sample 1A

Figure B.1 Figure B.2

Figure B.3 Figure B.4
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B.2 Sample 1B

Figure B.5 Figure B.6

Figure B.7 Figure B.8
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B.3 Sample 2A

Figure B.9 Figure B.10

Figure B.11 Figure B.12
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B.4 Sample 2B

Figure B.13 Figure B.14

Figure B.15 Figure B.16



Bibliography

Berre, T. (1982). Triaxial testing at the norwegian geotechnical institute. Geotechnical Testing

Journal, 5(1/2):3–17.

Blaker, , Carroll, R., Paniagua, P., DeGroot, D. J., and L’Heureux, J.-S. (2019). Halden research site:

geotechnical characterization of a post glacial silt. volume 5, pages 184–228.

Brandon, T. L., Rose, A. T., and Duncan, J. M. (2006). Drained and undrained strength inter-

pretation for low-plasticity silts. Journal of Geotechnical and Geoenvironmental Engineering,

132(2):250–257.

Fleming, L. N. and Duncan, J. M. (1990). Stressx2010;deformation characteristics of alaskan silt.

Journal of Geotechnical Engineering, 116(3):377–393.

Gawen, P. (2017). Triaxial testing - an introduction. https://www.vjtech.co.uk/blog/

triaxial-testing-an-introduction[Acccessed: 21 November 2019].

Høeg, K., Dyvik, R., and Sandbækken, G. (2000). Strength of undisturbed versus reconstituted

silt and silty sand specimens. Journal of Geotechnical and Geoenvironmental Engineering,

126(7):606–617.

ISO (2018). Geotechnical investigation and testing - laboratory testing of soil. Part 9: Consoli-

dated triaxial compression tests on water saturated soils (ISO 17892-9:2018), Geneva, Switzer-

land. CEN.

Long, M., Gudjonsson, G., Donohue, S., and Hagberg, K. (2010). Engineering characterisation of

norwegian glaciomarine silt. Engineering Geology, 110(3).

Nordal, S. (2019). GEOTECHNICAL ENGINEERING ADVANCED COURSE Lecture notes. NTNU

Geotechnical engineering group.

35

https://www.vjtech.co.uk/blog/triaxial-testing-an-introduction
https://www.vjtech.co.uk/blog/triaxial-testing-an-introduction


BIBLIOGRAPHY 36

Sandven, R., Senneset, K., Emdal, A., Nordal, S., Janbu, N., Grande, L., and Amundsen, H. A.

(2015). Geotechnics - Field and laboratory investigations. NTNU Geotechnical division, Trond-

heim.

Vegdirektoratet (2014). Håndbok R210 Laboratorieundersøkelser. Vegdirektoratet.


	Preface
	Acknowledgment
	Summary and Conclusions
	Introduction
	Background
	Halden test site
	Problem Formulation
	Literature review

	Objectives
	Limitations
	Approach

	Method
	The block sample
	Trimming the samples from the block
	Preparing the triaxial apparatus
	Building the sample into the triaxial apparatus
	Final preparations of the triaxial apparatus
	Saturation of sample
	Consolidation of sample
	Shearing of sample

	Results
	Water content
	Undrained shear strength
	Friction angle

	Discussion
	Water content
	Interpretation of the undrained shear strength
	Interpreting the friction angle

	Summary and Recommendations for Further Work
	Summary and Conclusions
	Recommendations for Further Work

	Acronyms
	Obtained plots from tests
	Sample 1A
	Sample 1B
	Sample 2A
	Sample 2B

	Bibliography

