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Sammendrag / Abstract
A recently proposed mechanism for fluidization of the front of dry-snow avalanches,
based on air escaping from the snow cover that is compressed under the weight of the
avalanche (Issler, 2013), is discussed. A minimal set of governing equations for a quasi-
3D depth-averaged flowmodel is developed and some possible extensions to this scheme
are presented. The model requires a number of constitutive relations describing (i) the
rate of compression of the snow cover under simultaneous sudden application of shear
and normal stress, (ii) the permeability of the snow cover and the avalanche body as
a function of density and possibly particle granulometry, and (iii) the reduction of the
effective stress in the avalanche body due to the escaping air. The model lends itself
to integration with both basal and frontal entrainment models (Issler, 2014; Gauer and
Issler, 2004), and to an extension describing the formation of a suspension layer. This is
a report on work in progress; it will be revised and extended as the work progresses.
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1 Introduction
Field observations indicate that snow avalanches can reach a fluidized flow regime at
moderate velocities on relatively gentle slopes and maintain it for long distances even in
the run-out zone in some cases. This appears to exclude inter-particle collisions and aero-
dynamic underpressure behind the nose as sufficient fluidizationmechanisms. Avalanche
mobility also varies strongly between events with similar release masses in the same path,
pointing towards a more significant role of the substrate, i.e., the snow cover, in the dy-
namics of snow avalanches than hitherto recognized.

Excess pore pressure is a key concept in the description of all types of landslides, both
subaerial and subaqueous. It is therefore somewhat surprising that it has not been applied
to snow avalanches, given the many similarities avalanches share with earth flows. An
explanation may be that the pore fluid in snow avalanches is air, which is perceived as too
compressible and light relative to the ice crystals. In contrast, the pore fluid in mudflows
and debris avalanches is water, whose density is constant and comparable to that of the
solid component.

Gauer and Issler (2004) hypothesized that compression of the pore air in the snow cover
by the avalanche flowing over it could be pressed out just right in front of the avalanche
head and carry the (least consolidated) top layer with it. Louge and coworkers (Louge
and others, 2011; Carroll and others, 2012, 2013) applied this concept to powder-snow
avalanches, calling it eruption currents. They focused, not on the overpressure due to the
weight of the dense flow, but the underpressure aerodynamically created in front of the
approaching avalanche (Nishimura and others, 1995; McElwaine and Nishimura, 2001;
McElwaine, 2005; McElwaine and Turnbull, 2005; Turnbull and McElwaine, 2008). In
this way, they derived expressions for the erosion rate.

During a discussion on the reasons for abnormally low effective friction angles for some
snow avalanches at the GeoFlow 13 workshop, Mohrig (personal communication, 2013)
pointed out that the substrate, i.e., the snow cover, most likely played a decisive role
in this phenomenon. Elaborating on this suggestion, the author proposed a conceptual
model for fluidization (Issler, 2013) that builds on the concept of air expulsion from
(Gauer and Issler, 2004), but recognizes that most of the air squeezed out of the snow
cover will flow through the avalanche body itself and support its fluidization. The fol-
lowing processes are deemed to be relevant for this effect:

The texture of the new-snow layer is destroyed rapidly due to shear and normal
loads when it is overflowed by the avalanche. The new-snow layer nevertheless
has a residual strength that increases as it gets compacted.

The compaction rate is limited by how quickly the pore air can be pressed out.
This time scale depends on the pressure gradient due to the overburden and the
permeability of the snow cover and the avalanche.
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As the pore air escapes, it exerts an upward force onto the avalanche, i.e., the ef-
fective pressure and the concomitant frictional shear stress diminish. Complete
fluidization cannot be achieved in this way, however.

An additional mechanism—presumably dispersive pressure from grain–grain
collisions and/or aerodynamic underpressure—must be invoked to complete flu-
idization and to lift the snow enough to obtain the observed intermediate densi-
ties of fluidized avalanches.

From this concept, we expect that complete fluidization is usually only possible as long as
pore air is expelled from the new-snow layer, i.e., only the frontal part of the avalanche
will be fluidized. Frictional shear stress is reduced significantly in the fully fluidized
head, which will therefore flow at higher speed and achieve a longer run-out. The degree
of fluidization and the length of the fluidized zone depend critically on the depth and
permeability of the snow cover and the avalanche.

The objective of the present note is to discuss this fluidization mechanism critically and
to formulate it more quantitatively in a form that is amenable to implementation in a
numerical model. Section 2 discusses how much the new-snow layer can be compressed
and what this implies for the excess pore pressure. In Sec. 3, the focus is on the speed
at which pore air is expelled from the new-snow layer and the avalanche. We consider
possible equations to describe the density evolution of the avalanche in Sec. 4 before
outlining the remaining work in Sec. 5.

2 Compressibility of the snow cover, effective pressure
and fluidization

As the avalanche front propagates, the snow cover that is being overflowed is suddenly
exposed to normal stresses of the order of 1–10 kPa and shear stresses roughly half that
size. The extra normal load will inevitably lead to some compression of the snow cover.
For loads near the lower end of this range, there will be only slight compression of well
settled old-snow layers, but a new-snow layer overflowed by a substantial avalanche
exerting 1 kPa ormore of shear stress and some 2 kPa of normal stress is expected to break
up into small fragments. The loading is very rapid, and the stresses are of a magnitude
that brings the snow into the brittle-fracture regime.

Typical new-snow densities are 100–200 kgmିଷ, i.e., the volumetric particle concentra-
tion is only 0.1–0.2 while the voidage is 0.8–0.9. This makes new snow an extremely
contractive material. The density of the new-snow layer right after the avalanche event
depends on the initial density and the extra load from the flow. There are a few field
observations where the density of the snow cover underneath an avalanche deposit was
measured and compared to the values measured in the undisturbed snow cover outside
the avalanche perimeter. These measurements indicate typical compressed densities in
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Figure 1 Normal-stress–density relaƟons for different types of snow and ice under different load-
ing condiƟons. From (Mellor, 1975). The relaƟon K from uniaxial loading unƟl fracture appears
most appropriate to compression of the new-snow layer under the weight of an avalanche.

the range 200–300 kgmିଷ, i.e., about 50–100% higher than the initial density. Typically,
the depth of the new-snow layer is reduced by 0.1–0.5m, i.e., between 0.1 and 0.5mଷ of
air (at ambient pressure) per square meter have to escape from the new-snow layer.

There are few studies of the compressibility of snow, and perhaps even fewer that apply to
natural new snow. The most relevant experimental data appears to be collected in (Mel-
lor, 1975, Fig. 13), which is reproduced here as Fig. 1, and in (Abele and Gow, 1975).
Natural snow settling under its own weight will reach densities of 200–300 kgmିଷ and
400–500 kgmିଷ under normal stresses of 1 kPa and 10 kPa, respectively. Under incre-
mental loading to failure under uniaxial strain, the same loads achieve final densities
of only about 120 and 270 kgmିଷ, respectively. Virtually no compression would be ob-
tained by means of an impact load of 10 kPa according to the theoretical model byMellor
(1968). The latter calculation assumes that the pore air cannot escape (undrained condi-
tions in geotechnical terminology) and therefore does not apply to our situation. Natural
compaction occurs over a period of months and thus likely overestimates the compaction
over a few seconds significantly. Mellor does not mention whether the uniaxial compres-
sion tests were carried out at drained or undrained conditions, but drained conditions are
more plausible. Thus this intermediate normal load–density relation likely is the most re-
alistic in the present context. In the range of interest (1–10 kPa), it may be approximated
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as
𝜌(𝜎) ≈ ൬100 + 170 lg 𝜎

1 kPa൰ kgmିଷ. (1)

It is as yet unclear how large the natural variability between different types of new snow
is.

The role of the pore air in the compression of snow needs to be discussed briefly. At the
scale of ambient pressure, ≈ 100 kPa, air is highly compressible. However, the stresses
inside an avalanche or snow cover are one to two orders of magnitude smaller. Under
gravity-induced compaction of snow, the pore air thus behaves like a nearly incompress-
ible liquid. The excess pore pressure (the difference between the air pressure in the pores,
𝑝, and the ambient pressure, 𝑝amb) may reach values of a few kilopascal. This provides
the pressure gradient that presses pore air out, but changes the air density by at most a few
per cent. Consequently, we may approximate the air density as constant. This effective
incompressibility of the air prevents the snow cover overflowed by an avalanche from
being compacted at once; instead, the compaction is governed by the rate at which air
can flow out to dissipate the excess pore pressure.

Next consider the effect of the escaping air on the snow-particle skeleton. Only a tiny
fraction of the excess pore pressure is consumed by accelerating the air, the rest is avail-
able for overcoming the flow resistance due to pressure drag and friction drag. The
pressure drag arises from the pressure difference between the lower and upper sides of
protrusions or cavities in the wall of the “pipes” through which the air escapes. The
friction drag is due to viscous shear stress along the “pipe” walls. Neglecting the small
amount of kinetic energy of the escaping pore air, the balance of momentum implies that
the net slope-normal traction on the avalanche be equal to the pore pressure drop between
the bottom and top of the avalanche, multiplied by the fraction of the cross-section occu-
pied by pores. The latter is equal to the volume fraction of pores (or the voidage). This
slope-normal traction reduces the effective pressure, 𝑝, i.e., the normal stress transmit-
ted through persistent inter-particle contacts, but not 𝑝ௗ, the dispersive pressure from
collisions, which is a function of the shear rate and the density.

If we assume the density and permeability to be constant across the depth of the avalanche
and inertial effects to be small, the force balance in the slope-normal direction at a dis-
tance 𝑧 from the flow surface is

𝜌𝑔௭𝑧 = 𝑝(𝑧) + 𝑝ௗ(𝑧) + (𝑝(𝑧) − 𝑝amb)(1 − 𝑐)
= 𝑝(𝑧) + 𝑝ௗ(𝑧) + 𝑝௨(𝑧). (2)

From here on, the subscripts 𝑓, 𝑠, 𝑎 and ‘amb’will denote quantities related to the flowing
avalanche, the snow cover, the pore air and the ambient air, respectively, if there is need
for distinction. Accordingly, 𝑐 is the volume concentration of snow particles in the
avalanche and ℎ is the flow depth. Note that the effective, dispersive and bulk excess
pore pressure, 𝑝௨, all refer to the bulk, whereas 𝑝 is the thermodynamic pressure of the
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pore air, whence the factor 1 − 𝑐. Solving for 𝑝 gives

𝑝(𝑧) = ൣ𝜌𝑔௭ℎ − 𝑝௨(ℎ)൧
𝑧
ℎ

− 𝑝ௗ(𝑧). (3)

Thus the excess pore pressure reduces the effective pressure inside the flowing avalanche
and the Coulomb-type friction forces, but not the shear stress due to particle collisions.

An important point is that the bulk excess pore-pressure cannot be larger than the over-
burden from which it arises. In the new-snow layer, we can use eq. (2) to determine 𝑝௨ if
we make assumptions on 𝑝. In the snow cover, 𝑝ௗ = 0 and 𝑝 can be identified with the
residual strength of the ice skeleton during collapse. The simultaneous action of shear
and normal stresses suggests that the bonds between the snow grains are broken almost
instantaneously so that the material becomes a contractive granular material. Under these
circumstances, one may expect Coulomb-like behavior under failure. In many cases, the
particles are not spherical, but of dendritic shape so that the coordination number (the
average number of contacts a particle has) is quite high at low bulk density. However,
under shear these delicate feathery extensions are easily broken and force chains are in-
terrupted. Under these conditions, we expect the effective friction coefficient to be sig-
nificantly smaller than for granular materials of nearly spherical particles. Conversely, if
the dendritic crystals are very strong, their shape will lead to a large friction coefficient
𝜇. Thus we make the assumption

𝑝(𝑧) = 𝜇𝑔௭[𝜌ℎ + 𝜌(𝑧 − ℎ)] (4)

and conjecture 0.2 < 𝜇 < 0.4 if the dendritic crystals break, and 0.5 < 𝜇 < 0.8 if
they do not break. 𝜇 is expected to grow as the density of the new-snow layer and thus
the coordination number increases.

3 Permeability of the snow cover and the flowing
avalanche

The preceding discussion implies that 𝑝௨ (and thus 𝑝) at a given instant does not directly
depend on how fast the pore air escapes. Conversely, the escape rate depends directly on
𝑝௨. The more slowly the pore air escapes and the larger the expelled volume of pore air,
the longer will the fluidized head of the avalanche be. The air flow rate, in turn, depends
on the permeability and depth of the new-snow layer and the avalanche. While some air
can be pressed into the underlying old-snow layers or escape along the circumference of
the avalanche body, we will neglect these effects here.

The rate at which air seeps through the avalanche body, 𝑞 (m sିଵ), is governed by the
pore pressure gradient, 𝜕௭𝑝, the specific permeability of the avalanche body, 𝐾 (mଶ), and
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the dynamic viscosity of air1, 𝜂 (Pa s):

𝑞 = − 𝐾
𝜂

𝜕௭𝑝௨. (5)

The pore pressure gradient is given, to first approximation, by the ratio of excess pore
air pressure at the interface, 𝑝௨(ℎ), and the avalanche flow depth, ℎ. The permeability
must be estimated from the avalanche density and the likely particle size distribution.

As a first step, we estimate the specific permeability of typical new-snow layers and
avalanche flows. Shimizu (1970) carried out a comprehensive study on natural snow at
different stages of metamorphosis and proposed a formula for the specific permeability of
fine-grained snow. He found values between 1.5–3 times smaller than in earlier studies.
Domine and others (2013) studied (subarctic) seasonal snow and found that the formula

𝐾 = 3.0 𝑟ଶeି.ଵଷmయ kgషభఘ (6)

gives a much better approximation for new snow than Shimizu’s. Both authors agree,
however, on the point that specific permeability diminishes exponentially with density,
𝜌, as the pores become smaller relative to the grains. The quantity 𝑟 is the equivalent
sphere radius, determined from the surface area per unit volume, SSA, by

𝑟 = 3
SSA

. (7)

The equivalent sphere radius of new snow is 𝑟 = 𝑂(10ିସm) while fine-grained snow
has 𝑟 ≈ 4 × 10ିସm. Typical values of the permeability of new snow with density
in the range 100–200 kgmିଷ are (0.3–1) × 10ି଼mଶ due to the very irregular surface
structure that creates much shear. Fine-grained snow with roughly double the density of
new snow has similar permeability because the particles are more rounded and the pore
walls therefore are smoother. The permeability of layers of depth hoar or faceted crystals,
which typically are significantly larger, can be more than an order of magnitude larger.
(Note that Domine and others (2013) did not investigate snow denser than 240 kgmିଷ.)

The permeability of flowing avalanches cannot readily be measured and therefore must
be estimated—with large uncertainty. Presumably it varies by orders of magnitude in
the course of the event and also between different locations in the avalanche (head vs.
tail, surface vs. bottom). The large particles present in the non-suspended part of the
avalanche are permeable themselves to some degree, but we will ignore this for the time
being and focus on the matrix of fine particles that fill the space between the large par-
ticles. For the sake of simplicity, we consider all particles less than 1–2mm in diameter
as small and the remainder as large. From field observations, we estimate that small
particles represent a fraction 0.5 < 𝑠 < 0.9 of the total particle volume fraction 𝑐 in a
dry-snow avalanche. (However, we have observed highly granular wet-snow avalanches
where large particles 5–20 cm in diameter accounted for nearly the entire mass.)

1If the air flow carries along fine snow particles, the mixture may have a significantly higher viscosity.
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The intrinsic density of small particles is close to the density of ice (917 kgmିଷ), whereas
large particles have typical densities in the range 𝜌 = 300–500 kgmିଷ. The density
of the mixture of air, large and small particles is 𝜌 ≈ [(1 − 𝑠)𝜌 + 𝑠𝜌]𝑐. The large
particles thus block a volume fraction (1−𝑠)𝑐 from seepage flow, while small particles
fill the fraction 𝑠𝑐/[1 − (1 − 𝑠)𝑐] of the remaining space. A rough estimate for the
specific permeability then is

𝐾 ≈ [1 − (1 − 𝑠)𝑐]𝐾(𝜌ᇱ), (8)

where 𝐾(𝜌ᇱ) is obtained from Eq. (6) by setting 𝜌ᇱ = 𝜌 ௦
ଵି(ଵି௦) . The equivalent

sphere radius of the small particles should be similar to that in the new-snow layer, i.e.,
𝑟 ≈ 10ିସm, unless the avalanche has entrained large amounts of older or humid snow.
𝐾(𝜌ᇱ)will have similar values as in the new-snow layer, and the factor in square brackets
in Eq. (8) is usually between 0.7 and 1. From this we tentatively infer that the perme-
ability in the flowing avalanche may be slightly lower than in the new-snow layer. It
appears reasonable to assume 𝐾 is about the same as in the new-snow layer as long as
the avalanche is not fully fluidized, but that 𝐾 increases significantly as the avalanche
density decreases.

As an avalanche becomes fluidized, the permeability increases significantly. Formula (8)
gives 𝐾 = 0.22 × 10ି଼mଶ for an avalanche of density 200 kgmିଷ consisting of new
snowwith 𝑟 = 10ିସm, but𝐾 = 1.57×10ି଼mଶ if the density has dropped to 50 kgmିଷ.
Granulation (Steinkogler and others, 2014) has an even more dramatic effect as 𝑟ଶ may
increase by four to six orders of magnitude.

One needs to take into account that the seepage flow may be non-Darcian, with the flow
rate increasing sub-linearly with the pressure gradient due to turbulence developing in the
pore flow. This effect can be quite pronounced so that the effective permeability and thus
the seepage rate may be one to two orders of magnitude smaller than one would expect
for Darcian flow. In snow avalanches, this difference may have (literally) far-reaching
consequences.

The pore air pressure gradient and the permeability in the avalanche determine the air
flux across the flow depth. However, Darcy’s law may not be adequate in this situa-
tion because the flow in the pores will often be turbulent: For an order-of-magnitude
estimate, assume a new-snow layer of initial depth ℎ, = 0.5m and initial density
𝜌, = 150 kgmିଷ to be compressed to the final density 𝜌,ଵ = 300 kgmିଷ and that the
pore pressure equilibrates over 𝛥𝑡 = 5 s. This gives an average bulk air flow velocity of

�̄�,bulk =
ℎ,
𝛥𝑡 ⋅ 𝜌,𝜌,ଵ

= 0.05msିଵ.

For volumetric snow-particle concentrations in the avalanche in the range 0.2 < 𝑐 <
0.6, the average air flow speed in the pores then becomes

�̄�,pore = �̄�,bulk ⋅
1

1 − 𝑐
= 0.06–0.12m sିଵ. (9)
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The resulting Reynolds number depends strongly on the pore diameter, 𝑑pore, which one
expects to vary between roughly 0.001m and 0.1m. One then arrives at

Re =
�̄�,pore𝑑pore

𝜈
≈ 10–10ଷ. (10)

Thus the air flow in the pores is expected to be laminar or nearly laminar in dense, small-
grained avalanches and turbulent in strongly fluidized avalanches with many large par-
ticles.

In fluidized avalanches with densities below approx. 100 kgmିଷ, the snow particles will
not be in permanent contact. This makes it possible to roughly estimate the effective
permeability and the influence of turbulence by boldly treating the particles as isolated
and calculate the pressure gradient from the drag force. Assume the avalanche density
and flow depth to be 𝜌 and ℎ, respectively, while the particles have intrinsic density 𝜌,
average exposed diameter 𝑑 and drag coefficient 𝐶. If the bulk flow velocity is �̄�,bulk,
the excess pore pressure gradient is

𝜕௭𝑝௨ ≈ 𝑛
1
2𝐶(Re)𝑑

ଶ𝜌�̄�ଶ, pore

≈ 1
2𝐶(Re)𝑑

ଶ 𝜌
𝜌𝑑ଷ

𝜌�̄�ଶ, bulk ቆ
1

1 − 𝜌/𝜌
ቇ
ଶ

(11)

= 1
2𝐶(Re)

�̄�, bulk
𝑑

𝜌𝜌
(𝜌 − 𝜌)ଶ

𝜌 �̄�, bulk

This expression leads to an effective permeability that depends on the particle Reynolds
number, Re ≡ 𝜌�̄�, bulk𝑑/𝜂, of the snow particles in the seepage flow:

𝐾eff =
2

𝐶(Re)Re
(1 − 𝑐)ଶ

𝑐 𝑑ଶ. (12)

The factor 𝑑ଶ reflects the fact that the pore size grows with particle size. 𝐾eff vanishes
quadratically as the pore space goes to zero (𝑐 → 1) and diverges as the particle con-
centration or density goes to zero (𝑐 → 0). For low Re, 𝐶 ∝ 1/Re, thus 𝐾eff is
independent of Re. At high Re, 𝐶 becomes independent of Re and 𝐾eff ∝ 1/Re.

4 Density evolution of the avalanche
The collapse of the snow cover under the weight of the avalanche flowing over it creates
a pressure difference across the depth of the avalanche body that is roughly proportional
to, but smaller than, the overburden due to the residual frictional resistance of the snow
cover against compression. By itself, the pore pressure gradient in the avalanche can only
achieve partial fluidization, but this will nevertheless reduce the (Coulomb-type) shear
stress opposing the avalanche flow. Accordingly, the avalanche will flow more rapidly
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so that the dispersive shear and normal stresses will increase. In parallel, the density
of the avalanche diminishes. Granular flow experiments (MiDi, 2004) indicate that the
density decreases about linearly with the so-called inertial number and thus with the shear
rate. The avalanche can attain the state of total fluidization, in which the effective stress
vanishes, if the dispersive normal stress and the underpressure due to the air flow over
the avalanche can compensate the remaining effective pressure:

𝑝(ℎ) = ℎ𝜌𝑔 cos𝜃 − 𝑝௨(ℎ) −
1
2𝐶𝜌𝑈

ଶ

= ቊ 0, total fluidization,
> 0, partial fluidization.

� (13)

We will not discuss the aerodynamic underpressure further in this note; see (Issler and
Gauer, 2008) for additional remarks.

Next, we need to address the question how excess pore pressure and dispersive pres-
sure determine the density of the completely fluidized avalanche in a stationary flow.
The excess pore pressure, being proportional to the overburden, is in first approxima-
tion independent of the avalanche density (however, the permeability and thus the flow
rate depend strongly on the density). The dispersive pressure and shear stress, in con-
trast, exhibit a very pronounced dependence on the density (Issler and Gauer, 2008).
Consider a quasi-stationary flow on an incline, with slope angle 𝜃, 𝑚 the mass per
unit footprint area, 𝑔௭ ≡ 𝑔 cos𝜃 and 𝑔௫ ≡ 𝑔 sin𝜃 the components of gravitational
acceleration. Assume that the density is uniform across the depth of the avalanche,
ℎ = 𝑚/𝜌, and that the excess pore pressure is a fraction 𝑟 of the overburden, i.e.,
𝑝௨(𝑧) = −𝑟𝑚𝑔௭𝑧/ℎ = −𝑟𝜌𝑔௭𝑧. The extended NIS model (Issler and Gauer, 2008)
specifies the stresses 𝜎௭௭ and 𝜎௫௭ as

𝜎௭௭(𝑧) = 𝑝(𝑧) + 𝑝௨(𝑧) + 𝜌𝜈(𝜌)�̇�ଶ(𝑧)
!= 𝜌𝑔௭𝑧, (14)

𝜎௫௭(𝑧) = 𝜇𝑝(𝑧) + 𝜌𝜈௦(𝜌)�̇�ଶ(𝑧)
!= 𝜌𝑔௫𝑧. (15)

As we assume the excess pore pressure and the dispersive pressure combined to be strong
enough to support the overburden (i.e., 𝑝 = 0), we obtain from eq. (15) that

𝜈௦(𝜌)�̇�ଶ(𝑧) = 𝑔௫𝑧,

which can be inserted in eq. (14) to obtain

𝜈௦(𝜌)
𝜈(𝜌)

= 𝑔௫
(1 − 𝑟)𝑔௭

= tan𝜃
1 − 𝑟 . (16)

Thus, once the density dependence of 𝜈 and 𝜈௦ is specified, the equilibrium density
for a given slope angle and the value of 𝑟 can be determined. Then also the shear rate
�̇�(𝑧) = ඥ𝑧𝑔௫/𝜈௦(𝜌) and the depth-averaged velocity can be calculated (the velocity
profile is Bagnoldian in this model).
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Now consider the situation of partial fluidization where 𝑝(𝑧) > 0. There are three
unknowns, i.e., 𝑝 in addition to 𝜌 and �̇�, but only two equations. Equation (14) gives

𝑝(𝑧) = (1 − 𝑟)𝜌𝑔௭𝑧 − 𝜌𝜈�̇�ଶ(𝑧).

Applying this to eq. (15) leads to

�̇�ଶ(𝑧) = 𝑧𝑔௫ − (1 − 𝑟)𝜇𝑔௭
𝜈௦(𝜌) − 𝜇𝜈(𝜌)

,

where 𝜌 remains undetermined. Two possible assumptions supplying the missing con-
dition are the following: (i) As in (Issler and Gauer, 2008), the density is assumed to be
constant until the conditions for full fluidization are met. One sets 𝜌 = 𝜌 and can then
solve for �̇�(𝑧) as usual. (ii) One adopts the relation known from the 𝜇(𝐼) rheology,

𝑐(𝑧) = 𝑐max − (𝑐max − 𝑐min) 𝐼(𝑧), (17)

where the inertial number is defined by 𝐼(𝑧) ≡ �̇�(𝑧)𝑑/√𝑧𝑔௭ and 𝑑 is the mean particle
diameter. Typical values for the volumetric concentrations are 𝑐min ≈ 0.5 and 𝑐max ≈
0.6, corresponding to avalanche densities 𝜌min ≈ 150–250 kgmିଷ and 𝜌max ≈ 200–
300 kgmିଷ.

Alternative (ii) is the more physical approach because shearing of a dense granular mass
leads to dilation. However, it is unclear by how much 𝑐min and 𝑐max have to be increased
to account for the wide distribution of particle sizes in snow avalanches. Moreover,
the formula (17) is linked to the 𝜇(𝐼) rheology, which behaves quite differently from
the NIS rheology. For these reasons, we provisionally adopt approach (i). Issler and
Gauer (2008) obtained curves for 𝜈,௦(𝑐) by approximating results from 2D calculations
in kinetic theory (Pasquarell and others, 1988) and 2D DEM simulations (Campbell and
Gong, 1986):

𝜈(𝑐) = 𝐴𝑐ି(𝑐∗ − 𝑐)ି , (18)
𝜈௦(𝑐) = 𝑘𝜈(𝑐) (1 + 𝑏𝑐ି௦) . (19)

Typical values of the parameters are 𝑐∗ = 0.6 and 𝐴 = 10ିସmଶ for a grain diameter of
1 cm. The values 𝑏 = 1, 𝑘 = 0.2, 𝑝 = 0.5, 𝑞 = 1.5, and 𝑠 = 0.5 give a fairly good
approximation of the theoretical curves. These curves ought to be updated to reflect
more recent 3D simulations, but we will nevertheless use them for demonstrating the
basic features of the model.

Finally, we need to address the question of the dynamics of the avalanche motion in
the 𝑧-direction. A possible starting point is the 𝑧-component of the momentum balance
equation,

𝜕௧(𝜌𝑤) + ∇∥ ⋅ (𝜌𝑤ݑ∥) + 𝜕௭(𝜌𝑤ଶ) = 𝜕𝜎௭ + 𝜌𝑔௭,
where the velocity is decomposed as ݑ ≡ ,∥ݑ) 𝑤)், the 𝑧-coordinate is measured from the
avalanche surface downward, and summation is implied over the repeated index 𝑖. The
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boundary conditions are 𝑤(𝑥, 𝑦, ℎ, 𝑡) = 0 (no vertical velocity at the ground, provided
there is no erosion) and 𝜎௭(𝑥, 𝑦, 0, 𝑡) = 0, i.e., the surface is stress-free. This equation
can be integrated over 𝑧 to give
𝜕௧(ℎ�̄��̄�) + ∇∥ ⋅ (𝑓௨௪ℎ�̄��̄�̄ݑ∥) + �̄�𝑤ଶ

௦ = ∇∥ ⋅ (ℎ�̄�௭∥) − 𝜎௭௭(ℎ) + ℎ�̄�𝑔௭. (20)
Here, 𝑤௦ ≡ 𝑤(𝑥, 𝑦, 0, 𝑡) is the bed-normal velocity at the avalanche surface. In order
to proceed, we make two (mutually compatible) assumptions: (i) The density is uniform
across the avalanche depth, i.e., 𝜌(𝑥, 𝑦, 𝑧, 𝑡) = �̄�(𝑥, 𝑦, 𝑡). (ii) The vertical velocity 𝑤
grows linearly from the bed to the surface so that 𝑤௦ = 2�̄�. If one assumes a Bagnold
profile for ݑ̄ (as predicted by the extended NIS rheology), the form factor evaluates to
𝑓௨௪ = 9/7. For the normal stress at the bed, 𝜎() ≡ 𝜎௭௭(ℎ), the extended NIS model
gives 𝜎() as the sum of excess pore pressure and dispersive normal stress,

𝜎() = 𝑟𝜌𝑔௭ℎ +
25
4 𝜈(𝜌)𝜌 ቆ

ݑ̄
ℎ

ቇ
ଶ
, (21)

in the case of total fluidization (𝑝 = 0). If fluidization is only partial, 𝜎() must equal
the overburden 𝜌𝑔௭ℎ, and the effective pressure at the bed–flow interface is 𝑝() =
(1 − 𝑟)𝜌𝑔௭ℎ − (25/4)𝜈(𝜌)𝜌(̄ݑ/ℎ)ଶ.

In order to close eq. (20), we need to specify the ratio of excess pore pressure to over-
burden, 𝑟. To this end, the dynamics of pore pressure creation by compression of the
snow cover and pore pressure dissipation by air flow through the avalanche needs to be
captured. Assuming isotropic permeability across the depth of the avalanche, we obtain
the air flow rate across ℎ from eq. (6) as

𝑞 = −𝐾eff

𝜂
𝑝௨
ℎ

.

We can use this expression in a balance equation for the air in the snow cover:
d
d𝑡 (ℎ௦𝜌𝑐) = 𝜌𝑞,

where ℎ௦ is the depth of the (new-)snow layer and 𝑐 the volume fraction of air in the
snow. The latter can be expressed as 𝑐 ≈ 1−𝜌௦/𝜌 in terms of the densities of the snow
layer and solid ice, respectively. The air density inside the snow cover depends on the
air pressure inside the snow cover, which can be expressed in terms of the excess pore
pressure if we assume isothermal compression of an ideal gas:

𝜌 = 𝜌amb
𝑝
𝑝amb

= 𝜌amb
𝑝௨

𝑐𝑝amb
.

The subscript ‘amb’ refers to the undisturbed ambient air. Expressing 𝜌 through the
excess pore pressure and the snow-cover density, we arrive at the ordinary differential
equation

d
d𝑡 ቆ

ℎ௦𝑝௨
𝜌 − 𝜌௦

ቇ = −𝐾eff

𝜂
𝑝௨
ℎ

𝑝௨
𝜌 − 𝜌௦

. (22)
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If we consider a situation where the snow density and snow depth are artificially held
constant, eq. (22) simplifies to �̇�௨ = −𝐶𝑝ଶ௨, i.e., the excess pore pressure drops like
𝑝௨(𝑡) ∝ 1/𝑡. Mass conservation implies ℎ௦(𝑥, 𝑦, 𝑡) = ℎ௦,(𝑥, 𝑦)𝜌௦,(𝑥, 𝑦)/𝜌௦(𝑥, 𝑦, 𝑡) if
we neglect themass of the pore air and snow erosion. Equation (22) can thus be expressed
in terms of 𝑝௨, �̇�௨, 𝜌௦ and �̇�௦.

We assume that the relaxation of the snow cover following a change in pressure is very
fast so that the density effectively is the equilibrium density corresponding to the instan-
taneous effective stress state, 𝜌௦(𝑝), cf. eq. (1). The momentum balance in 𝑧-direction
for the snow cover leads to

𝑝() = 𝜌ℎ(𝑔௭ − �̇�) − 𝑝()௨ ,
with the second term in parentheses accounting for inertial forces. If we can neglect the
inertial term in this equation, we directly obtain 𝜌௦ as a function of 𝑝௨ and �̇�௦ as a function
of 𝑝௨ and �̇�௨. Therewith eq. (22) becomes a closed equation for pore pressure evolution.

In shallow-water or depth-averaged models, it is important to truncate the equations con-
sistently with regard to the relevant time scales. Gravity-driven waves should be taken
into account in these models, but disturbances propagating at the speed of sound in the
flowing medium typically traverse the depth of the flow much faster than the flow in its
entirety reacts to, e.g., a change of slope inclination. Unless second-order effects like
deviations of the velocity profile from the equilibrium shape are also taken into account,
the fast modes of vertical motion should be filtered out (Issler and others, 2017). One
way to achieve this is to use the instantaneous equilibrium values of the density and the
flow depth and to reduce the momentum balance in bed-normal direction to the equation
for hydrostatic equilibrium. The density at a given location and time is determined from
eq. (21) by setting 𝜎() = 𝜌𝑔௭ℎ and substituting ℎ = 𝑚/𝜌, with𝑚 the flow mass per
unit footprint area. This leads to

𝜈(𝜌)𝜌ଷ =
4
25(1 − 𝑟)𝑚

ଷ

ଶݑ̄
, (23)

which gives a non-linear equation for 𝜌 upon substituting eq. (18) for 𝜈.

5 The next steps
The previous sections outlined the essential features of a quasi-3D flow model that ac-
counts for fluidization by the joint effect of dispersive pressure due to collisions between
snow particles and excess pore pressure generated in the collapse of the snow cover under
the weight of the avalanche. The following steps need to be carried out to fully implement
the model:

The pressure–density relation (1) ought to be tested for new snow from different
climatic zones.
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Our proposed density–permeability relation for avalanches, eq. (8) in conjunc-
tion with eq. (6), also needs to be tested for its applicability. This is not easy, but
can perhaps be achieved bymeasuring the density and permeability of avalanche
deposits.

The existing literature on the non-Darcian regime of flow through porous media
needs to be investigated further to see whether suitable approximation formu-
las have been developed and experimentally verified. Alternatively, one may
consider carrying out such tests on avalanche deposits or granular masses.

If the extended NIS model is to be implemented, the full 3D formulation of the
NIS model needs to be adapted to variable density. Moreover, the density de-
pendence of the dispersive-stress coefficients generalizing 𝜈 and 𝜈௦ should be
determined from 3D numerical simulations (or theoretical calculations if avail-
able).

The conservation equations for mass and momentum should be adapted to in-
clude erosion.

A maximally efficient method for solving the non-linear equation for the instan-
taneous density is crucial because that equation needs to be solved for each grid
node at every time step.

Due to high degree of non-linearity of the model equations, a robust numerical
scheme is even more important than in simple models of the Voellmy type.

Experience with the block model implementation of the extended NIS model without
seepage flow from the snow cover (Issler and Gauer, 2008) suggests that this model
will mark a significant step forward, on the conceptual level and hopefully also on the
practical level, once the challenges listed above are overcome.
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