4C-OBS Experiment at Frøya Tunnel, central Norway

Preliminary Results
Status: 16.12.2010

Maarten Vanneste, Sara Bazin @ NGI
Harald Westerdahl @ Statoil
Field work: Klaus Tronstad @ NGI
Outline of presentation

Aim

Present preliminary results from multiple 4C-ocean bottom seismometers survey to delineate sediment units and variations in bedrock velocities in fjords

Introduction – 4C seismics

Tunnel experiment at Frøya

⇒ Data available
⇒ Review of field data acquired
⇒ Snapshots of 4C seismic data collected
⇒ Preliminary results from refraction tomography and ray-tracing
⇒ Converted waves: Simulations vs. the real world

Summary and looking ahead
Introduction – 4C seismics

Pressure/Primary waves
- Sense matrix + pore fluids
- Standard exploration practice (2D-4D)
- Refractions + reflections
- Recorded with hydrophones or geophones/seismometers

Shear/Secondary waves
- Sense matrix, less pore fluids
- Lower velocity, higher resolution
- Dynamic shear modulus
- Converted waves: downgoing P, upcoming S
- Requires seabed-coupled geophones/seismometers

\[V_P = \sqrt{\frac{K + 4\mu/3}{\rho}} \]

\[V_S = \sqrt{\frac{\mu}{\rho}} < V_P \]

\[2 \leq \frac{V_P}{V_S} \leq 20^+ \]

Source for animation: web.ics.purdue.edu/~braile/edumod/waves/WaveDemo.htm
Introduction – 4C seismics
Introduction – 4C seismics

Integrated PP + PS/SS surveys (4-component)

| Imaging: | Imaging through gas clouds
| Sub-salt imaging
| Sub-basalt imaging
| Low-impedance contrast imaging
| Improved fault mapping
| Improved stratigraphy
| Improved shallow resolution |

| Characterization: | Lithology characterization
| Fluid characterization
| Reservoir characterization
| Anisotropy and fracture characterization
| Geomechanical soil conditions |

| Quantification: | Micro-scale distribution
| Shallow water flows
| Fluid saturation
| Gas and hydrates
| Velocity-based pore pressure and effective stress estimation |

Seismic data: Caldwell et al., 1999; Southern China Sea
Survey preparation/design

Aim

Determine bedrock velocity (P and S) from 4C OBS arrays and airgun shots

- Area with (thin) sediment cover
- Refraction seismology

Available data from target area

- Bathymetry, from contour data received from SSV
- Refraction data: no field data received, P-wave velocity zonations/ranges
- Reports received from SSV

Note: Projection conversion from ngo1948 akse2 to UTM32, WGS84

(Full-waveform) Simulations and Modelling

- “forecast” seismic response from sub-surface using 1D and 2D soil model
- Investigate the influence of airgun submersion depth for refractions
- Assist in understanding the events occurring on time-domain data, in particular P-to-S converted waves
Location map – Frøya Tunnel

Source: Google maps...
Available data (not digital though)

Basin with sediment infill
Actual survey details

2-day active surveying
- 3 OBS arrays deployed (orange)
- 8 seismic lines shot
- 4 relocation “lines”
- Simultaneous acquisition of SC streamer data
- 2 airgun sources used (40 and 250 in³), flexible and efficient
- SC Reflection and Refraction

- Weather not perfect (currents, waves and wind)
- No dGPS on vessel

Data quality variable
Note: topography
P-wave travel time analysis: refraction and tomography

Method: 2D refraction tomography and ray-tracing (using ReflexW)
- FD approximation of Eikonal equation for wave propagation
- Tomography requires vertical velocity gradients in sub-surface
- Tomography: no layers are needed

Procedure:
- Picking of first arrivals on all OBS along given line
 - hydrophone and vertical component
- Ray-tracing through uniform velocity model (Vp = 5 km/s);
- Ray-tracing through preliminary velocity model based on geological map;
- 2D P-wave velocity tomography using data from 4 OBS instruments
Travel-time picks: QC

Data processing/editing prior to first arrival picking needed

⇒ first arrival waveform consistent up to 1.5 km from OBS instrument

⇒ Picking error = 1 sample (1 ms)
2D ray-tracing through uniform velocity model

Model parameters

- 2 layers with constant velocity
- Water body: 1500 m/s
- Bedrock: 5000 m/s
- “Smooth” bathymetry
2D ray-tracing through “geological” model

Model parameters
⇒ Basin infill and fractured zonations from geological maps
⇒ Coarse bathymetry (pre-survey)
Ray-tracing results from all 4 OBS

Model parameters
- Initial model: 2 layers with constant velocity
- Water body: 1500 m/s
- Bedrock: 5000 m/s
- “Smooth” bathymetry

Results
- Reasonable fit when using 4 travel-time curves
- “Smooth” bathymetry
Tests on 2D tomography sensitivity

Inversion parameters:
- Structural model from geological map (coarser bathymetry)
- Initial velocity model containing weak zones
- Inverted model similar to inverted model with no assumption, but data fit not as good
Travel-times residuals – example along line A

<table>
<thead>
<tr>
<th>RMS values</th>
<th>Uniform model</th>
<th>Geological model</th>
<th>Inverted model</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBS 1</td>
<td>16.7</td>
<td>13.1</td>
<td>5.8</td>
</tr>
<tr>
<td>OBS 2</td>
<td>11.3</td>
<td>8.3</td>
<td>9.8</td>
</tr>
<tr>
<td>OBS 3</td>
<td>18.3</td>
<td>15.7</td>
<td>4.5</td>
</tr>
<tr>
<td>OBS 4</td>
<td>12.2</td>
<td>9.4</td>
<td>3.3</td>
</tr>
<tr>
<td>Four OBSs</td>
<td>14.8</td>
<td>11.7</td>
<td>6.2</td>
</tr>
</tbody>
</table>
Final model and data coverage

Preliminary Tomography Results

- Thicker sediment infill around OBS locations (basin)
- Lower velocities within fractured areas
- Depth of investigation in the order of 100 mbsl
Summary – Looking ahead

⇒ Multiple 2D 4C-OBS profiles successfully acquired along Frøya tunnel
⇒ P-wave refraction tomography reveals sedimentary basin and lateral variations in bedrock velocities
 → Sedimentary basin not included in starting model but well resolved
 → Well-constrained by deployment of 4 OBS units across basin
 → Using more OBS instruments would be helpful to constrain lateral velocity variations better
 → 3D topography within fjord and bedrock complicates matters

Looking ahead...
⇒ Refine P-wave refraction tomography and ray-tracing for all lines acquired
 → Match/compare at cross-points, pseudo-3D
 → Investigate the effect of dipping bedrock zonations (forward modelling)
 → Validation/cross-checking with tunnel data
⇒ The hunt for converted waves
Converted waves – Simulations vs. Field Data

- PS-reflection/refraction?
- PP-refraction
- PPS-refraction
- Converted waves – Simulations vs. Field Data
- lineC-040901-x, wagc=.05
Acquisition/Survey log

<table>
<thead>
<tr>
<th>Line</th>
<th>gun</th>
<th>direction</th>
<th>Profile</th>
<th>Reposition</th>
<th>offset</th>
<th>shot int.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>start</td>
<td>stop</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cu-inch</td>
<td></td>
<td>start</td>
<td>stop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>250</td>
<td>EW</td>
<td>18</td>
<td>377</td>
<td>51.35</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>40</td>
<td>WE</td>
<td>378</td>
<td>747</td>
<td>51.35</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>SN</td>
<td>749</td>
<td>976</td>
<td>15.00</td>
<td>5</td>
</tr>
<tr>
<td>1b</td>
<td>40</td>
<td>EW</td>
<td>1157</td>
<td>1505</td>
<td>51.35</td>
<td>5</td>
</tr>
<tr>
<td>1b</td>
<td>250</td>
<td>WE</td>
<td>1507</td>
<td>1835</td>
<td>5.00</td>
<td>5</td>
</tr>
<tr>
<td>1c</td>
<td>250</td>
<td>EW</td>
<td>1866</td>
<td>2114</td>
<td>22.75</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>250</td>
<td>NS</td>
<td>2240</td>
<td>2425</td>
<td>22.75</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>250</td>
<td>NS</td>
<td>2457</td>
<td>2539</td>
<td>22.75</td>
<td>5</td>
</tr>
</tbody>
</table>